Answer:
m = 0.0125 kg
Explanation:
Let us apply the formula for the speed of a wave on a string that is under tension:

where F = tension force
μ = mass per unit length
Mass per unit length is given as:
μ = m / l
where m = mass of the string
l = length of the string
This implies that:

Let us make mass, m, the subject of the formula:

From the question:
F = 20 N
l = 4.50 m
v = 85 m/s
Therefore:

<span>Easy, take the top off your Thermos bottle filled with hot coffee. Assuming perfect insulation, that hot coffee is isolated from the environment; but when the top is opened the heat can now escape to that environment.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
M = 328.70g
Explanation:
From the given values:
V = 346 cm³
M of 1 cm³ of Polythene = 0.95g or 95/100g
Solve:
M = <u>(95×346)</u>
10
= <u>3</u><u>2</u><u>8</u><u>7</u><u>0</u>
100
M = 328.70g
Answer:
Technician B is correct
Explanation:
Freezing is a method of conversion of substance in its liquid state to solid state. It is the process by which a liquid substance changes to a solid at a particular temperature.
Increasing the pressure and decreasing the temperature of a liquid increases its freezing point. For example, in other to freeze water i.e to change water to ice, it has to be kept in a fridge at a temperature lower than the temperature of the water. The essence of covering the fridge after placing the water in the fridge is to increase the pressure of the liquid hence increasing its freezing rate.
Based on the above explanation, it can be concluded that technician B is correct.
Answer:
0.187 m
Explanation:
We'll begin by calculating the acceleration of the ball. This can be obtained as follow:
Mass (m) = 0.450 Kg
Force (F) = 38 N
Acceleration (a) =?
F = m × a
38 = 0.450 × a
Divide both side by 0.450
a = 38 / 0.450
a = 84.44 m/s²
Finally, we shall determine the distance. This can be obtained as follow:
Initial velocity (u) = 2.20 m/s.
Final velocity (v) = 6 m/s
Acceleration (a) = 84.44 m/s²
Distance (s) =?
v² = u² + 2as
6² = 2.2² + (2 × 84.44 × s)
36 = 4.4 + 168.88s
Collect like terms
36 – 4.84 = 168.88s
31.52 = 168.88s
Divide both side by 168.88
s = 31.52 / 168.88
s = 0.187 m
Thus, the distance is 0.187 m