Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
Their relative speed is the sum of 60 and 40 or 100km/hr. They will travel the 150km in 1.5 hrs. When two object approach each other, the closing speed is just the sum of the speeds, therefore, the closing speed is your case is 100kph. So they will meet in 1.5 hours.
Their "airspeeds" (speed through the air) are equal, but the one traveling in the
same direction as the jet-stream appears to move along the ground faster.
Answer:
True
Explanation:
If it is at right conditions and correct time (night time most likely) they will all be visible
<span>1) Explain how the particles that make up solid matter can be in perpetual motion if they do not change position. Answer: they do not mov, just vibrate a bit more and move further apart. And as a result solid expand a bit.
</span><span>2) How the Kinetic Theory of Matter defines heat. Answer: Heat is a form of energy that particles convert into kinetic energy. Adding a heat energy increases the kinetic energy of particles. This means that as a substance is heated - the particles vibrate faster and move further apart. </span>