Answer:The distance and magnitude of displacement are sometimes equal." Jafar is correct. The distance traveled and the magnitude of displacement are equal if and only if the path is a straight line in one direction.
Explanation:
Responder:
20.3 ° C
Explicación:
<u>Según la ley de Charles</u>: <em>cuando la presión sobre una muestra de gas seco se mantiene constante, la temperatura y el volumen estarán en proporción directa.
</em>
Paso uno:
datos dados
Temperatura T1 = 20 ° C
Temperatura T2 =?
Volumen V1 = 12.2 cm ^ 3
Volumen V2 = 12.4 cm ^ 3
Aplicar la relación temperatura y volumen

sustituyendo tenemos

Cruz multiplicar tenemos

Temperatura delle braci 20.3°C
1. Frequency: 
The energy given is the energy per mole of particles:

1 mole contains a number of Avogadro of particles,
, equal to
particles
So, by setting the following proportion, we can calculate the energy of a single photon:

This is the energy of a single photon; now we can calculate its frequency by using the formula:

where
is the Planck's constant
f is the photon frequency
Solving for f, we find

2. Wavelength: 
The wavelength of the photon is given by the equation:

where

is the speed of the photon (the speed of light). Substituting,

<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m