1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
3 years ago
9

Waves break on a beach due to:

Physics
2 answers:
Anarel [89]3 years ago
6 0

Answer:

increasing wavelength near beach

Explanation:

When wavelength increases, frequency of these waves decreases and the waves suddenly stop.

This is also called damped oscillation.

Liula [17]3 years ago
5 0
The answer is “increasing wavelength near beach”
You might be interested in
A swinging pendulum has a total energy of <img src="https://tex.z-dn.net/?f=E_i" id="TexFormula1" title="E_i" alt="E_i" align="a
Zolol [24]

Answer:

\frac{E_{2}}{E_{1}} \approx 1 -\frac{3\theta}{1-\theta} (for small oscillations)

Explanation:

The total energy of the pendulum is equal to:

E_{1} = m\cdot g \cdot (1-\cos \theta)\cdot L

For small oscillations, the equation can be re-arranged into the following form:

E_{1} \approx m\cdot g \cdot (1-\theta) \cdot L

Where:

\theta = \frac{A}{L^{2}}, measured in radians.

If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is 4\theta and the total energy of the pendulum is:

E_{2} \approx m\cdot g \cdot (1-4\theta)\cdot L

The factor of change is:

\frac{E_{2}}{E_{1}} \approx \frac{1 - 4\theta}{1-\theta}

\frac{E_{2}}{E_{1}} \approx 1 -\frac{3\theta}{1-\theta}

3 0
3 years ago
Noㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
GREYUIT [131]

Answer:

?????...............

4 0
3 years ago
Read 2 more answers
A passenger in a train accelerating smoothly away from a station observes that a child’s yo-yo hanging by its string from a lugg
olchik [2.2K]

Answer:

1.73 m/s²

3.0 cm

Explanation:

Draw a free body diagram of the yo-yo.  There are two forces: weight force mg pulling down, and tension force T pulling up 10° from the vertical.

Sum of forces in the y direction:

∑F = ma

T cos 10° − mg = 0

T cos 10° = mg

T = mg / cos 10°

Sum of forces in the x direction:

∑F = ma

T sin 10° = ma

mg tan 10° = ma

g tan 10° = a

a = 1.73 m/s²

Draw a free body diagram of the sphere.  There are two forces: weight force mg pulling down, and air resistance D pushing up.  At terminal velocity, the acceleration is 0.

Sum of forces in the y direction:

∑F = ma

D − mg = 0

D = mg

½ ρₐ v² C A = ρᵢ V g

½ ρₐ v² C (πr²) = ρᵢ (4/3 πr³) g

3 ρₐ v² C = 8 ρᵢ r g

r = 3 ρₐ v² C / (8 ρᵢ g)

r = 3 (1.3 kg/m³) (100 m/s)² (0.47) / (8 (7874 kg/m³) (9.8 m/s²))

r = 0.030 m

r = 3.0 cm

3 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
The electric potential at the surface of a charged conductor _______.
frez [133]

Answer:

The electric potential at the surface of a charged conductor<u> is always such that the potential is zero at all points inside the conductor.</u>

Explanation:

Each point on the surface of a balanced charged conductor has the same electrical potential.

The surface on any charged conductor in electrostatic equilibrium is an equipotential surface. Since the electric field is equal to zero inside the conductor, the electric potential at any point inside and on the surface is equivalent to its value.

6 0
3 years ago
Other questions:
  • How will a wave change as it moves from a layer of higher velocity into a lower layer of lower velocity?
    6·1 answer
  • juie ran eight laps around her school's quarter mile track in 18 minutes. her average velocity was _______m/s
    7·2 answers
  • How fast is the car traveling if it has driven a total of 200 miles in 5.5 hours?
    11·1 answer
  • A car with an initial velocity of O m/s and a mass of 1500 kg reaches a velocity of 15 m/s in 5
    8·2 answers
  • In an isolated system, two cars, each with a mass of 1,500 kg, collide. Car 2 is
    8·2 answers
  • Juno created a diagram to describe characteristics of freezing and deposition. Which labels belong in the areas marked X and Y?
    15·2 answers
  • If you had a 30 pound barbell at home and you wanted to compare your muscular endurance to your younger brother's which method w
    11·1 answer
  • Sami pops a helium balloon at a birthday party. What will happen to the particles of helium that were in the balloon?
    15·1 answer
  • Why is your physical and mental health important?
    13·2 answers
  • How do you find the weight of an object on an incline in physics?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!