Hi,Find answers from Task 5
1.(X+4)+(X)+(X+4)+(X)=50cm
4x+8=50cm
4x=42
X=10.5cm
Length=10.5+4=14.5cm
Width=10.5cm
Area= length × width=(10.5/100) × (14.5/100) =0.0152m2
2. Volume of a sphere= 4/3 ×π×r³
4/3 ×π×r³=3.2×10^-6 m³
r³=3.2×10^-6 m³/1.33×π
r³=7.64134761e-7
r=0.00914m
Surface area of the blood drop= 4πr²
=4×3.142×0.00914×0.00914=0.00105m²
3.
Equation of an ideal gas = PV =n RT
Equation for pressure, = P= n RT/V
Equation for the volume of an ideal gas= V= n RT/P
If the volume of gas doubles ,V(new)= 2n RT/P
Equation for temperature of an ideal gas, T = PV/n R
If temperature of gas triples, T (new)= 3PV/n R
New Equation for Pressure, = n× R× (3PV/n R)/(2n RT/P)
Pressure factor increase= P(new)/P(old) ={ n× R× (3PV/n R)/(2n RT/P)}/{ n RT/V}
=3PV²/2n RT
Answer:
Weight and Mass !!!!!!
Explanation:
Galileo discovered that objects that are more dense, or have more mass, fall at a faster rate than less dense objects, due to this air resistance. A feather and brick dropped together. Air resistance causes the feather to fall more slowly.
<h2>Answer::</h2>
Humans (biosphere) built a dam out of rock materials (geosphere). Water in the lake (hydrosphere) seeps into the cliff walls behind the dam, becoming groundwater (geosphere), or evaporating into the air (atmosphere).','.
Answer:
0.25 m.
Explanation:
We'll begin by calculating the spring constant of the spring.
From the diagram, we shall used any of the weight with the corresponding extention to determine the spring constant. This is illustrated below:
Force (F) = 0.1 N
Extention (e) = 0.125 m
Spring constant (K) =?
F = Ke
0.1 = K x 0.125
Divide both side by 0.125
K = 0.1/0.125
K = 0.8 N/m
Therefore, the force constant, K of spring is 0.8 N/m
Now, we can obtain the number in gap 1 in the diagram above as follow:
Force (F) = 0.2 N
Spring constant (K) = 0.8 N/m
Extention (e) =..?
F = Ke
0.2 = 0.8 x e
Divide both side by 0.8
e = 0.2/0.8
e = 0.25 m
Therefore, the number that will complete gap 1is 0.25 m.