So it could follow the correct mass for the atom
If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>
Answer:

Explanation:
From the question we are told that:
Mass 
Deviation 
Time 
Generally the equation for moment of inertia is mathematically given by



The sum is the result of adding 9260 and 3240 together. Each number can
be broken down into constituent parts in order to make addition easier.
Each place in the number represents its value, so a 2 in the hundreds
place represents 200.
You can separate numbers out this way to
make it easier to add them. 9260 can be broken down into 9000+200+60
while 3240 is 3000+200+40. You can then add these six numbers together.
60+40 = 100
200+200 = 400
9000+3000 = 12000
Then add your three partial results together to receive the final answer:
12000+400+100 = 12500