<span>The maximum possible efficiency, i.e the efficiency of a Carnot engine , is give by the ratio of the absolute temperatures of hot and cold reservoir.
η_max = 1 - (T_c/T_h)
For this engine:
η_max = 1 - [ (20 +273)K/(600 + 273)K ] = 0.66 = 66%
The actual efficiency of the engine is 30%, i.e.
η = 0.3 ∙ 0.664 = 0.20 = 20 %
On the other hand thermal efficiency is defined as the ratio of work done to the amount of heat absorbed from hot reservoir:
η = W/Q_h
So the heat required from hot reservoir is:
Q_h = W/η = 1000J / 0.20 = 5000J</span>
Explanation:
Bond Enthalpy : It is defined as amount of energy required to break a the particular bond in there gaseous state. It is also known as bond energy. It units are kJ/mol.
- Breaking of a bond is an Endothermic process (energy absorbed from the surroundings).
- Formation of bond is an Exothermic process (energy is released to the surroundings).
If the average bond enthalpy for a C-H bond is 413 kJ/mol, When the C-H bond breaks in which energy will be required ,which will be an endothermic reaction.
By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>