Answer:
For number 4: A vector pointing to the right with a magnitude of 2.0
Explanation:
Very simple- just subtract 6-2
I am not sure how to do #2- sorry!
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
false. clinical deals with patients and treats the.
research looks at root causes which clinical applies
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
Answer: The complexity of filter is the order of the filter. Greater the order of the filter, more efficient the filter is. Roll of value of one filter is 20dB/dec. So the roll-off value of 8th order filter is 160dB/dec. 8th order filter is more efficient than the second order low-pass filter.