I would honestly say C. All others have ingredients in them that makes them work, the combination of stuff to put out the fire, film is made from a certain material and drugs are an ovbious mixture. Looking at the stars is the only thing you don't need chemistry for.
Answer:
87.54 g of H₂O₂
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 1.55×10²⁴ molecules
Mass of H₂O₂ =.?
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole of H₂O₂
Next, we shall determine the mass of 1 mole of H₂O₂. This can be obtained as follow:
1 mole of H₂O₂ = (2×1) + (2×16)
= 2 + 32
= 34 g
Thus,
6.02×10²³ molecules = 34 g of H₂O₂
Finally, we shall determine mass of H₂O₂ that contains 1.55×10²⁴ molecules. This can be obtained as follow:
6.02×10²³ molecules = 34 g of H₂O₂
Therefore,
1.55×10²⁴ molecules
= (1.55×10²⁴ × 34)/6.02×10²³
1.55×10²⁴ molecules = 87.54 g of H₂O₂
Thus, 87.54 g of H₂O₂ contains 1.55×10²⁴ molecules.
Answer:
the law of conservation of matter.
Explanation:
I am in chem
When we have this balanced equation for a reaction:
Fe(OH)2(s) ↔ Fe+2 + 2OH-
when Fe(OH)2 give 1 mole of Fe+2 & 2 mol of OH-
so we can assume [Fe+2] = X and [OH-] = 2 X
when Ksp = [Fe+2][OH-]^2
and have Ksp = 4.87x10^-17
[Fe+2]= X
[OH-] = 2X
so by substitution
4.87x10^-17 = X*(2X)^2
∴X^3 = 4.8x10^-17 / 4
∴the molar solubility X = 2.3x10^-6 M
The choices for this are as follows:
A) gases; solids
B) metals; nonmetals
C) nonmetals; metals
<span>D) reactive; nonreactive
</span>
I think the correct answer is option B. The stair-step line between the pink squares and the yellow squares separates the metals from the nonmetals. Hope this helps.