Answer:
Decreasing the volume of solvent in the solution of molecule A
Explanation:
We know that one of the factors that affect the rate of reaction is the concentration of the reactants. The greater the concentration of reactants, the faster the rate of reaction (the greater the frequency of collision between reactants).
Hence, when we decrease the volume of solvent in the solution of molecule A, the concentration of the solution increases and consequently more particles of molecule A are available to collide with particles of molecule B resulting in a higher rate of reaction.
Answer:
B. Design homes that can be built on stilts where flooding is likely to occur.
C. Replace power lines that have been damaged by severe weather.
Explanation:

<span>Velocity describes the speed of an object and its direction of motion</span>
<u>Answer:</u> The correct statement is low temperature only, because entropy decreases during freezing.
<u>Explanation:</u>
The relationship between Gibb's free energy, enthalpy, entropy and temperature is given by the equation:

Where,
= change in Gibb's free energy
= change in enthalpy
T = temperature
= change in entropy
It is given that freezing of methane is taking place, which means that entropy is decreasing and
is becoming negative. It is also given that the reaction is an exothermic reaction, this means that the
is also negative.
For a reaction to be spontaneous,
must be negative.
![-ve=-ve-[T(-ve)]\\\\-ve=-ve+T](https://tex.z-dn.net/?f=-ve%3D-ve-%5BT%28-ve%29%5D%5C%5C%5C%5C-ve%3D-ve%2BT)
From above equations, it is visible that
will be negative only when the temperature will be low.
Hence, the correct statement is low temperature only, because entropy decreases during freezing.