1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
3 years ago
12

Much of the workd went to bed hungry

Engineering
1 answer:
Marysya12 [62]3 years ago
7 0
The workers went to bed hungry probably because they are hard workers and so didn’t want to eat because they didn’t want to take break┌(; ̄◇ ̄)┘
You might be interested in
Which is an alloy made up of iron and carbon and has high compressive and tensile strength?
Digiron [165]

Answer: Steel is an alloy of iron with typically a few percent of carbon to improve its strength and fracture resistance compared to iron. Many other additional elements may be present or added. Stainless steels that are corrosion and oxidation resistant need typically an additional 11% chromium.

Explanation:

3 0
3 years ago
simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum and maximum temperatures in the cycl
Irina18 [472]

Answer:

a) 764.45K

b) 210.48 kJ/kg

c) 30.14%

Explanation:

pressure ratio = 10

minimum temperature = 295 k

maximum temperature = 1240 k

isentropic efficiency for compressor = 83%

Isentropic efficiency for turbine = 87%

<u>a) Air temperature at turbine exit </u>

we can achieve this by interpolating for enthalpy

h4 = 783.05 kJ/kg ( calculated in the background ) at state 4 using Table A-17  for  Ideal gas properties of air

T4 ( temperature at Turbine exit ) = 760 + ( 780 - 760 ) (\frac{783.05-778.18}{800.13-778.18} ) = 764.45K

<u>b) The net work output </u>

first we determine the actual work input to compressor

Wc = h2 - h1  ( calculated values )

     = 626.57 - 295.17 =  331.4 kJ/kg

next determine the actual work done by Turbine

Wt = h3 - h4  ( calculated values )

     = 1324.93 - 783.05 = 541.88 kJ/kg

finally determine the network output of the cycle

Wnet = Wt - Wc

         = 541.88 - 331.4  = 210.48 kJ/kg

<u>c) determine thermal efficiency </u>

лth = Wnet / qin  ------ ( 1 )

where ; qin = h3 - h2

<em>equation 1 becomes </em>

лth = Wnet / ( h3 - h2 )

      = 210.48 / ( 1324.93 - 626.57 )

      = 0.3014  =  30.14%

6 0
3 years ago
Carbon resistors often come as a brown cylinder with colored bands. These colored bands can be read to determine the manufacture
alexandr1967 [171]

Answer:

a) 4.7 kΩ, +/- 5%

b) 2.0 MΩ, +/- 20%

Explanation:

a) If the resistor has the following combination of color bands:

1) Yellow = 1st digit = 4

2) Violet = 2nd digit = 7

3) Red = multiplier = 10e2

4) Gold = tolerance = +/- 5%

this means that the resistor has 4700 Ω (or 4.7 kΩ), with 5% tolerance.

b) Repeating the process for the following combination of color bands:

1)  Red = 1st digit = 2

2) Black = 2nd digit = 0

3) Green = multiplier = 10e5

4) Nothing = tolerance = +/- 20%

This combination represents to a resistor of 2*10⁶ Ω (or 2.0 MΩ), with +/- 20% tolerance.

7 0
3 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
8090 [49]

Answer:

a) The change in Kinetic energy, KE = -1.95 kJ

b) Power output, W = 10221.72 kW

c) Turbine inlet area, A_1 = 0.0044 m^2

Explanation:

a) Change in Kinetic Energy

For an adiabatic steady state flow of steam:

KE = \frac{V_2^2 - V_1^2}{2} \\.........(1)

Where Inlet velocity,  V₁ = 80 m/s

Outlet velocity, V₂ = 50 m/s

Substitute these values into equation (1)

KE = \frac{50^2 - 80^2}{2} \\

KE = -1950 m²/s²

To convert this to kJ/kg, divide by 1000

KE = -1950/1000

KE = -1.95 kJ/kg

b) The power output, w

The equation below is used to represent a  steady state flow.

q - w = h_2 - h_1 + KE + g(z_2 - z_1)

For an adiabatic process, the rate of heat transfer, q = 0

z₂ = z₁

The equation thus reduces to :

w = h₁ - h₂ - KE...........(2)

Where Power output, W = \dot{m}w..........(3)

Mass flow rate, \dot{m} = 12 kg/s

To get the specific enthalpy at the inlet, h₁

At P₁ = 10 MPa, T₁ = 450°C,

h₁ = 3242.4 kJ/kg,

Specific volume, v₁ = 0.029782 m³/kg

At P₂ = 10 kPa, h_f = 191.81 kJ/kg, h_{fg} = 2392.1 kJ/kg, x₂ = 0.92

specific enthalpy at the outlet, h₂ = h_1 + x_2 h_{fg}

h₂ = 3242.4 + 0.92(2392.1)

h₂ = 2392.54 kJ/kg

Substitute these values into equation (2)

w = 3242.4 - 2392.54 - (-1.95)

w = 851.81 kJ/kg

To get the power output, put the value of w into equation (3)

W = 12 * 851.81

W = 10221.72 kW

c) The turbine inlet area

A_1V_1 = \dot{m}v_1\\\\A_1 * 80 = 12 * 0.029782\\\\80A_1 = 0.357\\\\A_1 = 0.357/80\\\\A_1 = 0.0044 m^2

3 0
3 years ago
Yall know what this is called?​
aliya0001 [1]

Answer:

oof no bro

Explanation:

5 0
3 years ago
Other questions:
  • Biologists use a sequence of letters A, C, T, and G to model a genome. A gene isa substring of a genome that starts after a trip
    5·1 answer
  • The SDS for any chemical used at a job site must be available
    6·2 answers
  • What is 1000 kJ/sec in watts?
    10·1 answer
  • The Greek alphabet has 24 distinct lowercase letters. How many bits are needed to be able to encode any single lowercase Greek l
    9·1 answer
  • Which of the following is correct oil viscosity for hybrid electric vehicle?
    10·1 answer
  • Why do engineers (and others) use the design process?
    13·1 answer
  • If a particle moving in a circular path of radius 5 m has a velocity function v = 4t2 m/s, what is the magnitude of its total ac
    15·2 answers
  • The shear force diagram is always the slope of the bending moment diagram. a)True b)- False
    14·1 answer
  • PLEASE HELP ASAP!!! Thanks
    11·1 answer
  • Dndbgddbdbhfdhdhdhhfhffhfhhddhhdhdhdhdhd​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!