1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
3 years ago
10

How much to build a barber clipper?

Engineering
1 answer:
goldenfox [79]3 years ago
8 0
Like the price to manufacture?
You might be interested in
Time management is a learned behavior.<br> True<br> False
larisa [96]

Answer:

true

Explanation:

3 0
3 years ago
Read 2 more answers
An air-standard Carnot cycle is executed in a closed system between the temperature limits of 350 and 1200 K. The pressures befo
SVEN [57.7K]

This question is incomplete, the complete question is;

An air-standard Carnot cycle is executed in a closed system between the temperature limits of 350 and 1200 K. The pressures before and after the isothermal compression are 150 and 300 kPa, respectively. If the net work output per cycle is 0.5 kJ, determine (a) the maximum pressure in the cycle, (b) the heat transfer to air, and (c) the mass of air. Assume variable specific heats for air.

Answer:

a) the maximum pressure in the cycle is 30.01 Mpa

b) the heat transfer to air is 0.7058 KJ

c) mass of Air is 0.002957 kg

Explanation:

Given the data in the question;

We find the relative pressure of air at 1200 K (T1) and 350 K ( T4)

so from the "ideal gas properties of air table"

Pr1 = 238

Pr4 = 2.379

we know that Pressure P1 is only maximum at the beginning of the expansion process,

so

now we express the relative pressure and pressure relation for the process 4-1

P1 = (Pr2/Pr4)P4

so we substitute

P1 = (238/2.379)300 kPa

P1 = 30012.6 kPa = 30.01 Mpa

Therefore the maximum pressure in the cycle is 30.01 Mpa

b)

the Thermal heat efficiency of the Carnot cycle is expressed as;

ηth = 1 - (TL/TH)

we substitute

ηth = 1 - (350K/1200K)

ηth = 1 - 0.2916

ηth = 0.7084

now we find the heat transferred

Qin = W_net.out / ηth

given that the net work output per cycle is 0.5 kJ

we substitute

Qin = 0.5 / 0.7084

Qin = 0.7058 KJ

Therefore, the heat transfer to air is 0.7058 KJ

c)

first lets express the change in entropy for process 3 - 4

S4 - S3 = (S°4 - S°3) - R.In(P4/P3)

S4 - S3 = - (0.287 kJ/Kg.K) In(300/150)kPa

= -0.1989 Kj/Kg.K = S1 - S2

so that; S2 - S1 = 0.1989 Kj/Kg.K

Next we find the net work output per unit mass for the Carnot cycle

W"_netout = (S2 - S1)(TH - TL)

we substitute

W"_netout = ( 0.1989 Kj/Kg.K )( 1200 - 350)K

= 169.065 kJ/kg

Finally we find the mass

mass m = W_ net.out /  W"_netout

we substitute

m = 0.5 / 169.065

m = 0.002957 kg

Therefore, mass of Air is 0.002957 kg

5 0
3 years ago
Using phasors, the value of 37 sin 50t + 30 cos(50t – 45°) is _________ cos(50t+(_____°)). Please report your answer so the magn
Mars2501 [29]

Answer: 62 cos(50t - 70°)

Explanation:

First we need to convert all sines into cosines because phasor forms are represented through cosine. For that we will use the fact that sin(wt + ∅) = cos(wt + ∅ - 90°)

Therefore, 37sin50t = <u>37cos(50t - 90°)</u>

Now we have 37cos(50t - 90°)+ 30 cos(50t – 45°). We need to convert them into phasor form to add the terms. For that we will use the fact Acos(wt+∅)=A∠∅ which can be represented using real and imaginary parts as A [cos(∅)+jsin(∅)].

So,

37cos(50t - 90°)

= 37∠-90°

= 37[cos(-90°)+jsin(-90°)

=37[0+j(-1)]

= <u>-j37</u>

Similarly,

30 cos(50t – 45°)

=30∠-45

=30[cos(-45)+jsin(-45)

=30[0.707-j0.707]

=<u>21.21 - j21.21</u>

37cos(50t - 90)+ 30 cos(50t – 45°) = -j37+21.21 - j21.21 = <u>21.21 - j58.21</u>

Now we need to convert the real and imaginary parts back to cosine form. We will first calculate the magnitude by the formula √a²+b² where a and b are the real and imaginary parts respectively.

Here a=21.21 and b=58.21

magnitude = √(21.21)²+(58.21)²=61.95≅<u>62</u>

For calculating phase ∅ the formula is ∅=inversetan (b/a) where a and b are the real and imaginary parts respectively.

∅=inversetan(-58.21/21.21)

= -69.9°≅<u>-70°</u>

So the final answer is 62cos(50t-70°)

7 0
4 years ago
What happened to the speed when net force is big
Ksenya-84 [330]

Answer:

it will change its velocity at a constant rate

3 0
3 years ago
The Ögure shows a piping system. Water áows upward and to the right (from A to B) in the 4-inch-diameter pipe. The pipe exits to
Otrada [13]
I think u add the and add again than u be good to go
8 0
3 years ago
Other questions:
  • Consider a fully-clamped circular diaphragm poly-Si with a radius of 250 μm and a thickness of 4 μm. Assume that Young’s modulus
    14·1 answer
  • Steam enters an adiabatic nozzle at l MPa, 260 C, 30 m/s and exits at 0.3 MPa and 160 'C. Calculate the velocity at the exit.
    13·1 answer
  • If the maximum allowable shear stress is 70 MPa, find the shaft diameter needed to transmit 40 kW when the shaft speed is 250 rp
    5·1 answer
  • Light energy produces the only voltage in a solar cell. (a)-True(T) (b)- false(F)
    9·1 answer
  • The files provided in the code editor to the right contain syntax and/or logic errors. In each case, determine and fix the probl
    15·1 answer
  • A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.0mm (0.20 in.
    6·1 answer
  • What Is the Job Demand for Solar Engineers?<br> (2 or more sentences please and thank you)
    9·1 answer
  • When framing a wall, temporary bracing is
    15·1 answer
  • The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
    11·1 answer
  • Along with refining craft skills another way to increase the odds for career advancement is to
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!