Answer:
(a) The force sustained by the matrix phase is 1802.35 N
(b) The modulus of elasticity of the composite material in the longitudinal direction Ed is 53.7 GPa
(c) The moduli of elasticity for the fiber and matrix phases is 124.8 GPa and 2.2 GPa respectively
Explanation:
Find attachment for explanation
Answer:
the nation will suffer terrible consequences
Explanation:
I did that and got it right
Answer:
The volume flow rate necessary to keep the temperature of the ethanol in the pipe below its flashpoint should be greater than 1.574m^3/s
Explanation:
Q = MCp(T2 - T1)
Q (quantity of heat) = Power (P) × time (t)
Density (D) = Mass (M)/Volume (V)
M = DV
Therefore, Pt = DVCp(T2 - T1)
V/t (volume flow rate) = P/DCp(T2 - T1)
P = 20kW = 20×1000W = 20,000W, D(rho) = 789kg/m^3, Cp = 2.44J/kgK, T2 = 16.6°C = 16.6+273K = 289.6K, T1 = 10°C = 10+273K = 283K
Volume flow rate = 20,000/789×2.44(289.6-283) = 20,000/789×2.44×6.6 = 1.574m^3/s (this is the volume flow rate at the flashpoint temperature)
The volume flow rate necessary to keep the ethanol below its flashpoint temperature should be greater than 1.574m^3/s
Answer:
intrinsic semiconductors
Explanation:
An intrinsic semiconductor is also known as a pure conductor. In such a semiconductor there are no impurities, that is why it is said to be pure.
It has some of these properties:
1. Electrical conductivity is only based on temperature
2. The quantity of electrons is the same as the number of holes in the valence bond
3. Electrical conductivity is not on the high side
4. These materials exist in their pure forms.
Answer:
The percentage of the remaining alloy would become solid is 20%
Explanation:
Melting point of Cu = 1085°C
Melting point of Ni = 1455°C
At 1200°C, there is a 30% liquid and 70% solid, the weight percentage of Ni in alloy is the same that percentage of solid, then, that weight percentage is 70%.
The Ni-Cu alloy with 60% Ni and 40% Cu, and if we have the temperature of alloy > temperature of Ni > temperature of Cu, we have the follow:
60% Ni (liquid) and 40% Cu (liquid) at temperature of alloy
At solid phase with a temperature of alloy and 50% solid Cu and 50% liquid Ni, we have the follow:
40% Cu + 10% Ni in liquid phase and 50% of Ni is in solid phase.
The percentage of remaining alloy in solid is equal to
Solid = (10/50) * 100 = 20%