Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Answer:
230.4W
Explanation:
Heat transfer by conduction consists of the transport of energy in the form of heat through solids, in this case a jacket.
the equation is as follows

Where
Q=heat
k=conductivity=0.04
A=Area=1.8m^2
T2=33C
T1=1C
L=thickness=1cm=0.01m
Q=230.4W
the skier loses heat at the rate of 230.4W
The brakes are being bled on a passenger vehicle with a disc/drum brake system is described in the following
Explanation:
1.Risk: Continued operation at or below Rotor Minimum Thickness can lead to Brake system failure. As the rotor reaches its minimum thickness, the braking distance increases, sometimes up to 4 meters. A brake system is designed to take kinetic energy and transfer it into heat energy.
2.Since the piston needs to be pushed back into the caliper in order to fit over the new pads, I do open the bleeder screw when pushing the piston back in. This does help prevent debris from traveling back through the system and contaminating the ABS sensors
3.There are three methods of bleeding brakes: Vacuum pumping. Pressure pumping. Pump and hold.
4,Brake drag is caused by the brake pads or shoes not releasing completely when the brake pedal is released. ... A worn or corroded master cylinder bore causes excess pedal effort resulting in dragging brakes. Brake Lines and Hoses: There may be pressure trapped in the brake line or hose after the pedal has been released.
Answer:
See the attached picture for answer.
Explanation:
See the attached picture for explanation.