I believe that the answer to this would be B
Hope this helped
Do all you can in one big day that you have time off or work on one thing then work on the other at the same time
Huh??????????????????????????
Answer:
please give me brain list and follow
Explanation:
Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value. If the charges come 10 times closer, the size of the force increases by a factor of 100. The size of the force is proportional to the value of each charge.
Answer:
RE of Hydrogen = 6.47 x RE of Krypton
Explanation:
Actually the correct formula for comparing rate of effusion (RE) of two gases is:
RE of Gas A
------------------- = √ ( Molar mass of B / Molar mass of A)
RE of Gas B
You can designate which of the two gases you have (hydrogen and krypton) will be your gas A and gas B. So for this particular problem, let us make hydrogen as gas A and Krypton as gas B. So the equation becomes:
RE of Hydrogen
------------------------- = √ (Molar mass of Krypton / Molar mass of Hydrogen)
RE of Krypton
Get the molar masses of Hydrogen and Krypton in the periodi table:
RE of Hydrogen
------------------------- = √ (83.798 g/mol / 2 g/mol)
RE of Krypton
RE of Hydrogen
------------------------- = 6.47 ====> this can also be written as:
RE of Krypton
RE of Hydrogen = 6.47 x RE of Krypton
It means that the rate of effusion of Hydrogen gas will be 6.47 faster than the rate of effusion of Krypton gas. With the type of question you have, it doesn't matter which gases goes on your numerator and denominator. What's important is that you show the rate of effusion of a gas with respect to the other. But if that's concerns you the most, then take the gas which was stated first as your gas A and the latter as your gas B unless the problem tells you which one will be on top and which is in the bottom.