Answer:
0.08 mol L-1
Explanation:
Sulfuric acid Formula: H2SO4
Ammonia Formula: NH3
Ammonium sulfate Formula: (NH₄)₂SO₄
H2SO4 + 2NH3 = 2NH4+ + SO4 2-
H2SO4 + 2NH3 = (NH₄)₂SO₄
H2SO4 = (1/2)x (32.8 x 10^-3 L x 0.116 mol L-1)/25 x 10^-3 L
= 0.08 mol L-1
Answer:

Explanation:
Hello,
In this case, since at 60 °C, 108 grams of ammonium bromide are completely dissolved in 100 grams of water for a saturated solution, once it is cooled to 30 °C, wherein only 83.2 grams are completely dissolved in 100 grams of water, the following mass will precipitate:

Best regards.
Answer:
I think copper
Explanation:
Material IACS % Conductivity
Silver 105
Copper 100
Gold 70
Aluminum 61
Nickel 22
Zinc 27
Brass 28
Iron 17
Tin 15
Phosphor Bronze 15
Lead 7
Nickel Aluminum Bronze 7
Steel 3 to 15
the table might help- your indian brother
Li2S + 2 HNO3 --> 2 LiNO3 + H2S
Li2 S + H2 N2 O2 --> Li2 N2 O5 + H2 S
Li S + H2 N2 O5 -> Li N2 O5 + H2 S
Li2 S2 + H4 N4 O10 --> Li2 N4 O10 + H4 S2
Li^2 S^2 + H^4 N^4 O^10 --> Li^2 N^4 O^10 + H^4 S^2
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C