Answer:
= 925.92 N
≅ 926N
Explanation:
Pressure due to car = pressure due to applied force
12000/18^2 = Force / 5^2
force = 12000 * 25/ 324
= 925.92 N
For equilibrium
Pressure1 = Pressure2
A1F1 = A2F2
12000*pi*(5^2) = F2 ( pi)*(18^2)
so, F2 = Applied force to lift car = 925.92 N
Pascal's principle
Pressure1 = Pressure2
F1/A1 = F2/A2 (F=force and A=area)
A1 =Pi*(0.05)²
A2 =Pi(0.18)²
F2=12000
F1 = 12000*(0.05)² / (0.18)² = 926N
Answer:
1÷60 h
time equals distance upon speed
Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ
Answer:
F = 351×10³lb
Explanation:
Given the density
ρg = 64.6lb/ft³
Diameter d = 12ft
The tank is horizontally cylindrical. The vertical distance from the top to the bottom of the tank is h = 12ft
The pressure in the tank is
P = ρgh = 64.6 × 12 = 775.2lb/ft²
The force exerted on one end of the tank is therefore F = PA = 775.2 × πd² = 775.2π×12²
F = 351×10³lb.
Answer: The weight of the air displaced by the balloon is less than the volume of the balloon.
Explanation:
A hot air balloon is a cloth wrap that contains several thousand cubic meters of air inside (a large volume of air). The burner heats the liquid propane to a gaseous state to generate a huge flame, which can reach more than 3 meters, thus heating the air mass inside the balloon. In this way,<u> its density is modified with respect to the air that surrounds it</u>, because the hot air is lighter than the outside air (less dense), causing the balloon to rise and float.
Now, if we know that the density of a body
is directly proportional to its mass
and inversely proportional to its volume
:

We can deduce that <u>by increasing the volume of the body, its density will decrease.</u>
This is proof of <em><u>Archimedes' Principle</u></em>:
<em>A body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.</em>
In this case the fluid is the air outside. So, the warm air inside the balloon, being less dense, will weigh less than the outside air and therefore will receive an upward pushing force or thrust that will make the balloon ascend.