1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
10

A system gains 767 kJ of heat, resulting in a change in internal energy of the system equal to +151 kJ. How much work is done?

Physics
1 answer:
Crazy boy [7]3 years ago
6 0

Answer:

The work done on the system is -616 kJ

Explanation:

Given;

Quantity of heat absorbed by the system, Q = 767 kJ

change in the internal energy of the system, ΔU = +151 kJ

Apply the first law of thermodynamics;

ΔU = W + Q

Where;

ΔU  is the change in internal energy

W is the work done

Q is the heat gained

W = ΔU  - Q

W = 151 - 767

W = -616 kJ (The negative sign indicates that the work is done on the system)

Therefore, the work done on the system is -616 kJ

You might be interested in
A(n) _______ studies physical components and characteristics of celestial objects.
inna [77]

Answer:

Astronomers?

Explanation:

5 0
2 years ago
which religious group did not expand their membership by great numbers during the Second Great Awakening
Dimas [21]

Answer:

The Catholics.

Explanation:

see answer.

4 0
2 years ago
PLEASE HURRYY!!!!The diagram shows two balls released from a device at the same time. The ball on the left falls freely from res
LenaWriter [7]

Answer:

i'm pretty sure its B but i may be wrong if you dont wanna take the chance wait for someone

Explanation:

4 0
3 years ago
Read 2 more answers
A spherical shell is rolling without slipping at constant speed on a level floor. What percentage of the shell's total kinetic e
IgorC [24]

Answer:

41.667 per cent of the total kinetic energy is translational kinetic energy.

Explanation:

As the spherical shell is rolling without slipping at constant speed, the system can be considered as conservative due to the absence of non-conservative forces (i.e. drag, friction) and energy equation can be expressed only by the Principle of Energy Conservation, whose total energy is equal to the sum of rotational and translational kinetic energies. That is to say:

E = K_{t} + K_{r}

Where:

E - Total energy, measured in joules.

K_{r} - Rotational kinetic energy, measured in joules.

K_{t} - Translational kinetic energy, measured in joules.

The spherical shell can be considered as a rigid body, since there is no information of any deformation due to the motion. Then, rotational and translational components of kinetic energy are described by the following equations:

Rotational kinetic energy

K_{r} = \frac{1}{2}\cdot I_{g}\cdot \omega^{2}

Translational kinetic energy

K_{t} = \frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2}

Where:

I_{g} - Moment of inertia of the spherical shell with respect to its center of mass, measured in kg\cdot m^{2}.

\omega - Angular speed of the spherical shell, measured in radians per second.

R - Radius of the spherical shell, measured in meters.

After replacing each component and simplifying algebraically, the total energy of the spherical shell is equal to:

E = \frac{1}{2}\cdot (I_{g} + m\cdot R^{2})\cdot \omega^{2}

In addition, the moment of inertia of a spherical shell is equal to:

I_{g} = \frac{2}{3}\cdot m\cdot R^{2}

Then, total energy is reduced to this expression:

E = \frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2}

The fraction of the total kinetic energy that is translational in percentage is given by the following expression:

\%K_{t} = \frac{K_{t}}{E}\times 100\,\%

\%K_{t} = \frac{\frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2} }{\frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2} } \times 100\,\%

\%K_{t} = \frac{5}{12}\times 100\,\%

\%K_{t} = 41.667\,\%

41.667 per cent of the total kinetic energy is translational kinetic energy.

7 0
3 years ago
How did Archimedes measure the mass of the block of gold?
MA_775_DIABLO [31]
Archimedes found a piece of gold and a piece of silver with exactly the same mass. He dropped the gold  into a bowl filled to the brim with water and measured the volume of water that spilled out. Then he did the same thing with the piece of solver. Although both metals had the same mass, the silver gad a larger volume; therefore, it displaced more water than the gold did. That's because the silver was less dense than gold. Afterwards he applied the same method to the crown for the king he served who had got a new crown from a jeweler who gave it to him. Archimedes found a piece of pure gold that had the same mass as the crown. He placed the pure gold chuck and the crown in water, one at a time. The crown displaced more water the piece of gold. Therefore, its density was less than pure gold.  
5 0
2 years ago
Other questions:
  • A ball of mass 0.05 kg strikes a smooth wall normally four times in 2 second with a velocity of 10m/s. Each time the ball reboun
    13·1 answer
  • What is the net charge on a sphere that has the following? a) 5.29 x 10^6 electrons and 7.07 x 10^6 protons
    15·1 answer
  • What happens when you modify a pwc's exhaust system?
    5·1 answer
  • Physics is confusing :(
    13·1 answer
  • Please help!!!! on both of them this is physics not math
    14·1 answer
  • Gravitational force between two objects depends on
    10·2 answers
  • Two rams run toward each other. One ram has a mass of 49 kg and runs west
    7·1 answer
  • During radioactive decay, ___ energy was transformed to ____
    11·1 answer
  • A marble block has dimensions of 0.4m x 0.4m x 2m. Knowing that the density of marble is 2,400 kg / m3, calculate the mass of th
    13·1 answer
  • Please help me answer
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!