Answer:
1520mmHg
Explanation:
Data obtained from the question include:
V1 (initial volume) = 600 mL
P1 (initial pressure) = 760 mmHg
V2 (final volume) = 300 mL
P2 (final pressure) =.?
Using the Boyle's law equation P1V1 = P2V2, the final pressure of the gas can easily be obtained as shown below:
P1V1 = P2V2
760 x 600 = P2 x 300
Divide both side by 300
P2 = (760 x 600) /300
P2 = 1520mmHg
The final pressure of the gas is 1520mmHg
Independent Variable: a variable that you can change in an experiment
Dependent Variable: something that changes as you change the independent variable
control variable: something that is not changed throughout the experiment
<h3>
<u>moles of H2SO4</u></h3>
Avogadro's number (6.022 × 1023) is defined as the number of atoms, molecules, or "units of anything" that are in a mole of that thing. So to find the number of moles in 3.4 x 1023 molecules of H2SO4, divide by 6.022 × 1023 molecules/mole and you get 0.5646 moles but there are only 2 sig figs in the given so we need to round to 2 sig figs. There are 0.56 moles in 3.4 x 1023 molecules of H2SO4
Note the way this works is to make sure the units are going to give us moles. To check, we do division of the units just like we were dividing two fractions:
(molecules of H2SO4) = (molecules of H2SO4)/1 and so we have 3.4 x 1023/6.022 × 1023 [(molecules of H2SO4)/1]/[(molecules of H2SO4)/(moles of H2SO4)]. Now, invert the denominator and multiply:
<h3 />
Answer:
Scientists believe that comets are the debris left from the solar nebula which condensed to form the Sun and planets in our solar system. Most comets are thought to originate in a huge cloud called the Oort Cloud. ... Comets follow a regular orbit around the Sun.
Hope this helps! :)
Explanation: