A large atom means that the radius would be large, meaning that the effective nuclear charge is low, therefore a lower electronegativity based on the periodic table. A smaller atom would mean the opposite, therefore a higher electronegativity. This combination would mean that the new molecule is polar.
Also, to answer your question, it would be most likely different from both atoms, as size doesn't really matter in a compound's properties.
Answer:It’s C on edge 2020
(Combustion of car engines producing pollutants in the air)
Explanation:
I got it right :))
Answer:
See explanation
Explanation:
A dipole refers to a bond in which its two ends have opposite charges. A dipole results from a large difference in electronegativity between two atoms in a bond.
For instance, consider the bond between hydrogen and chlorine in HCl. The electronegativity of hydrogen is 2.2 while that of chlorine is 3.16. The significant electronegativity difference between the two atoms leads to a charge separation.
A partial positive charge appears on the atom that is less electronegative (hydrogen) while a negative charge appears on the more electronegative atom (chlorine).
This charge separation occurs because the shared electrons of the bond are more closely attracted to chlorine making it partially negative compared to hydrogen. A dipole moment now exists in the H-Cl bond hence the molecule is said to have a dipole.
Answer:
The new volume is 5.92 L, which is approximately 6 L
Explanation:
As the gas temperature increases, the molecules move faster and take less time to reach the walls of the container. This means that the number of crashes per unit of time will be greater. That is, there will be an increase (for an instant) in the pressure inside the container and the volume will increase.
So Charles's Law is one of the gas laws that relates the volume and temperature of a certain amount of gas at constant pressure and says that:
- If the temperature increases the volume increases
- If the temperature decreases the volume decreases
Mathematically this is expressed by:

When you want to study two different states, an initial and a final one of a gas, this law is expressed by:

In this case:
- V1: 8 L
- T1: 473 K
- V2: ?
- T2: 350 K
Replacing:

Solving:

V2=5.92 L
<u><em>The new volume is 5.92 L, which is approximately 6 L</em></u>