Answer:
Yes.
Explanation:
Yes, we have a problem with sending it to a landfill of copper oxide because it has harmful effect on the health of humans as well as more weight of the copper oxide. Copper oxide usually found in powder form which can easily be inhaled that causes death of the cell due to toxic effect on the mitochondria and lysosomes of the cell. It makes problem of health in carrying the copper oxide from the basement of the factory to the landfill region due to its power form so we can say that it can do problems to human health while carrying from one place to another.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
I think the reaction that represents a balanced, double replacement chemical reaction is B which is <span>Rb2O + Cu(C2H3O2)2 → 2RbC2H3O2 + CuO </span>
Answer:
0.0177 L of nitrogen will be produced
Explanation:
The decomposition reaction of sodium azide will be:

As per the balanced equation two moles of sodium azide will give three moles of nitrogen gas
The molecular weight of sodium azide = 65 g/mol
The mass of sodium azide used = 100 g
The moles of sodium azide used = 
so 1.54 moles of sodium azide will give =
mol
the volume will be calculated using ideal gas equation
PV=nRT
Where
P = Pressure = 1.00 atm
V = ?
n = moles = 2.31 mol
R = 0.0821 L atm / mol K
T = 25 °C = 298.15 K
Volume = 
Answer:
The number of formula units in 3.81 g of potassium chloride (KCl) is approximately 3.08 × 10²²
Explanation:
The given parameters is as follows;
The mass of potassium chloride produced in the chemical reaction (KCl) = 3.81 g
The required information = The number of formula units of potassium chloride (KCl)
The Molar Mass of KCl = 74.5513 g/mol

Therefore, we have;

1 mole of a substance, contains Avogadro's number (6.022 × 10²³) of formula units
Therefore;
0.051106 moles of KCl contains 0.051106 × 6.022 × 10²³ ≈ 3.077588 × 10²² formula units
From which we have, the number of formula units in 3.81 g of potassium chloride (KCl) ≈ 3.08 × 10²² formula units.