Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Answer:
According to molecular orbital theory, chemical bond occurs as electrons are able to reduce their energy by entering the resulting molecular orbitals.
Chemical bonds are not located among atoms, they are distributed all over the molecule.
Uses test methods to solve the equation of Schrodinger.
You can never do better than nature, however strong your assumption is. Calculations of minimum energy must be done by software.
Answer:
Name Formula
nitrite ion NO2−
permanganate ion MnO4−
phosphate ion PO43−
hydrogen phosphate ion HPO42−
Explanation:
<span>using the law pv=nrT and equating these you get the equation v1/t1 = v2/t2 since pressure is constant it also cancels with n and r. show that v1=36.4, t1 = 25 + 273.15 and t2 = 88 +273.15. 273.15 is the Kelvin conversion. then solve for v2. This is 44.1 L.</span>