Answer:
Your answer will be b(molten material from the outer core makes its way to the surface of earth)
Explanation:
Which type of radioactive decay produces particles with the most mass? Alpha.
(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
Answer:
Answers are in the explanation.
Explanation:
<em>Given concentrations are:</em>
- <em>SO₂ = 0.20M O₂ = 0.60M SO₃ = 0.60M</em>
- <em>SO₂ = 0.14M O₂ = 0.10M SO₃ = 0.40M </em>
- <em>And SO₂ = 0.90M O₂ = 0.50M SO₃ = 0.10M</em>
<em />
In the reaction:
2SO₂(g) + O₂(g) ⇄ 2SO₃(g)
Kc is defined as:
Kc = 15 = [SO₃]² / [O₂] [SO₂]²
<em>Where concentrations of each species are equilbrium concentrations.</em>
<em />
Also, you can define Q (Reaction quotient) as:
Q = [SO₃]² / [O₂] [SO₂]²
<em>Where concentrations of each species are ACTUAL concentrations.</em>
<em />
If Q > Kc, the reaction will shift to the left until Q = Kc;
If Q < Kc, the reaction will shift to the right until Q = Kc
If Q = Kc, there is no net reaction because reaction would be en equilibrium.
Replacing with given concentrations:
- Q = [0.60M]² / [0.60M] [0.20M]² = 15; Q = Kc → No net reaction
- Q = [0.40M]² / [0.10M] [0.14M]² = 82; Q > Kc, → Reaction will shift to the left
- Q = [0.10M]² / [0.50M] [0.90M]² = 0.015; Q < Kc → Reaction will shift to the right
<em />
the answer is D
Because x can equal any number divided by 2 +1