Answer:
0.718L of 0.81M HCl are required
Explanation:
Based on the reaction:
Cd(s)+2HCI(aq) → H2(g)+CdCl2(aq)
<em>1 mol of Cd reacts with 2 moles of HCl</em>
<em />
To solve this question we must, as first, find the moles of Cd. With the moles of Cd we can find the moles of HCl needed to react completely with the Cd. With the moles and the molarity we can find the volume:
<em>Moles Cd -Molar mass: 112.411g/mol-:</em>
32.71g * (1mol / 112.411g) = 0.2910 moles Cd
<em>Moles HCl:</em>
0.2910 moles Cd * (2 moles HCl / 1mol Cd) =
0.5820 moles HCl
<em>Volume:</em>
0.5820 moles HCl * (1L / 0.81moles) =
<h3>0.718L of 0.81M HCl are required</h3>
<u>Answer:</u> The solubility product of silver (I) phosphate is 
<u>Explanation:</u>
We are given:
Solubility of silver (I) phosphate = 1.02 g/L
To convert it into molar solubility, we divide the given solubility by the molar mass of silver (I) phosphate:
Molar mass of silver (I) phosphate = 418.6 g/mol

Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The chemical equation for the ionization of silver (I) phosphate follows:
3s s
The expression of
for above equation follows:

We are given:

Putting values in above expression, we get:

Hence, the solubility product of silver (I) phosphate is 
Cells have limitations, if the cell is stronger it targets other cells , when a cell is weak it possibly mean it’s disease.
Glucose is C6H12O6 and the energy is located in its C-H bonds