Answer is: mass od zinc is 392,28 g.
N(Zn) = 3,6·10²⁴.
n(Zn) = N(Zn) ÷ Na.
n(Zn) = 3,6·10²⁴ ÷ 6·10²³ 1/mol.
n(Zn) = 6 mol.
m(Zn) = n(Zn) · M(Zn).
m(Zn) = 6 mol · 65,38 g/mol.
m(Zn) = 392,28 g.
Na - Avogadro number.
n - amount of substance.
M - molar mass.
Percent error can be calculated by the difference of the theoretical value and the measured value divided by the theoretical value multiplied by 100 percent.
% error = 27.26 - 27.2 / 27.26 x100
% error = 0.22%
A value close to zero would mean that the measured value is more or less near the actual value.
Answer:
(a) 7.11 x 10⁻³⁷ m
(b) 1.11 x 10⁻³⁵ m
Explanation:
(a) The de Broglie wavelength is given by the expression:
λ = h/p = h/mv
where h is plancks constant, p is momentum which is equal to mass times velocity.
We have all the data required to calculate the wavelength, but first we will have to convert the velocity to m/s, and the mass to kilograms to work in metric system.
v = 19.8 mi/h x ( 1609.34 m/s ) x ( 1 h / 3600 s ) = 8.85 m/s
m = 232 lb x ( 0.454 kg/ lb ) = 105.33 kg
λ = h/ mv = 6.626 x 10⁻³⁴ J·s / ( 105.33 kg x 8.85 m/s ) = 7.11 x 10⁻³⁷ m
(b) For this part we have to use the uncertainty principle associated with wave-matter:
ΔpΔx > = h/4π
mΔvΔx > = h/4π
Δx = h/ (4π m Δv )
Again to utilize this equation we will have to convert the uncertainty in velocity to m/s for unit consistency.
Δv = 0.1 mi/h x ( 1609.34 m/mi ) x ( 1 h/ 3600 s )
= 0.045 m/s
Δx = h/ (4π m Δv ) = 6.626 x 10⁻³⁴ J·s / (4π x 105.33 kg x 0.045 m/s )
= 1.11 x 10⁻³⁵ m
This calculation shows us why we should not be talking of wavelengths associatiated with everyday macroscopic objects for we are obtaining an uncertainty of 1.11 x 10⁻³⁵ m for the position of the fullback.
Answer:
D. Atoms are like solid balls
Explanation:
John Dalton proposed that all matter is composed of very small things which he called atoms. This was not a completely new concept as the ancient Greeks (notably Democritus) had proposed that all matter is composed of small, indivisible (cannot be divided) objects. When Dalton proposed his model electrons and the nucleus were unknown.