Step-by-step explanation:
This is a linear equation in slope intercept form which is

where m is the slope and b is the y intercept.
The equation

Has a slope of -1/3 so this means that the slope will be decreasing. A negative linear equation increases as we go left. and decreases as we go right. The y intercept is 2. So this means the graph must pass through (0,2) and when x=0, y must be 2.
In other words, look for a line that the y values increase as we go left and decrease we go right. Also look for a point (0,2) and make sure the graph pass through it.
Whats the question? we cant help you if you dont give us the question.
We are given statement : 3 more than a number then divided the result by 8.
We need to write an algebraic expression for it.
Let us assume unknown number be n.
3 more than n = (n+3).
Now, we need to divide that result (n+3) by 8.
So, we would get (n+3) divided by 8 =
.
<h3>Therefore, final expression is

</h3>
Answer:
<u>Perimeter</u>:
= 58 m (approximate)
= 58.2066 or 58.21 m (exact)
<u>Area:</u>
= 208 m² (approximate)
= 210.0006 or 210 m² (exact)
Step-by-step explanation:
Given the following dimensions of a rectangle:
length (L) =
meters
width (W) =
meters
The formula for solving the perimeter of a rectangle is:
P = 2(L + W) or 2L + 2W
The formula for solving the area of a rectangle is:
A = L × W
<h2>Approximate Forms:</h2>
In order to determine the approximate perimeter, we must determine the perfect square that is close to the given dimensions.
13² = 169
14² = 196
15² = 225
16² = 256
Among the perfect squares provided, 16² = 256 is close to 252 (inside the given radical for the length), and 13² = 169 (inside the given radical for the width). We can use these values to approximate the perimeter and the area of the rectangle.
P = 2(L + W)
P = 2(13 + 16)
P = 58 m (approximate)
A = L × W
A = 13 × 16
A = 208 m² (approximate)
<h2>Exact Forms:</h2>
L =
meters = 15.8745 meters
W =
meters = 13.2288 meters
P = 2(L + W)
P = 2(15.8745 + 13.2288)
P = 2(29.1033)
P = 58.2066 or 58.21 m
A = L × W
A = 15.8745 × 13.2288
A = 210.0006 or 210 m²