Option D:
ΔCAN ≅ ΔWNA by SAS congruence rule.
Solution:
Given data:
m∠CNA = m∠WAN and CN = WA
To prove that ΔCAN ≅ ΔWNA:
In ΔCAN and ΔWNA,
CN = WA (given side)
∠CNA = ∠WAN (given angle)
NA = NA (reflexive side)
Therefore, ΔCAN ≅ ΔWNA by SAS congruence rule.
Hence option D is the correct answer.
Answer:
identity property of addition-
a+0=a
identity property of multiplication-
a*1=a
Step-by-step explanation:
i cant give u an exact answer as u didnt give Micheals answers so i just gave some examples about what addition and multiplication identity property should look like. Identity property's concept is to keep the same identity. Basically, "a" shouldnt change. In addition, to keep a the same all u hv to do is add 0 as anything plus 0 is the same. for multiplication, just multiply by 1. Hope this helps!!
Given that

, then

The slope of a tangent line in the polar coordinate is given by:

Thus, we have:

Part A:
For horizontal tangent lines, m = 0.
Thus, we have:

Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are horizontal are:
</span><span>θ = 0
</span>θ = <span>2.02875783811043
</span>
θ = <span>4.91318043943488
Part B:
For vertical tangent lines,

Thus, we have:

</span>Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are vertical are:
</span>θ = <span>4.91718592528713</span>