We use the formula:
PV = nRT
First let us get the volume V:
volume = 14 ft * 12 ft * 10 ft = 1,680 ft^3
Convert this to m^3:
volume = 1680 ft^3 * (1 m / 3.28 ft)^3 = 47.61 m^3
n = PV / RT
n = (1 atm) (47.61 m^3) / (293.15 K * 8.21x10^-5 m3 atm /
mol K)
<span>n = 1,978.13 mol</span>
Answer:
The correct answer is C. element
Explanation:
The sample cannot be an element because an element - or <em>elemental substance</em> - cannot be decomposed into simpler substances. Thus, it cannot be composed by differents types of atoms. For example, an element is carbon (C).
As the sample contains <u>three types of atoms</u>, it can be a compound, a molecule or a mixture, because they can be composed by different types of atoms - of different chemical elements. For example, the sample could contain the element carbon (C) combined with other elements, for example oxygen (O) or hydrogen (H), amoing others.
https://goo.gl/images/Zs316J go here to get the anwser you are looking for.
Answer:
The answer to the question is
50 % of the original amount of potassium 40 will be left after one half life or 1.25 billion years
Explanation:
To solve the question we note that the half life is the time for half of the quantity of substance that undergoes radioactive decay to disintegrate, thus
we have
half life of potassium 40 K₄₀ = 1.25 billion years
To support the believe tht the rock was formed 1.25 billion years ago we have

After 1.25 billion years we have
=
=0.5 of
will be left or 50 % of the original amount of potassium 40 will be left
Applied force
Gravitational force
And Normal force