To get the percent yield, we will use this formula:
((Actual Yield)/(Theoretical Yield)) * 100%
Values given: actual yield is 220.0 g
theoretical yield is 275.6 g
Now, let us substitute the values given.
(220.0 grams)/(275.6 grams) = 0.7983
Then, to get the percentage, multiply the quotient by 100.
0.7983 (100) = 79.83%
Among the choices, the most plausible answer is 79.8%
<span>
</span>
Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
<h3>4.8x10⁻³ Liters are required</h3>
Answer:
0.74M
Explanation:
Step 1 :
Data obtained from the question.
Initial concentration (C1) = 3M
Initial volume (V2) = 185mL
Final volume (V2) = 750mL
Final concentration (C2) =..?
Step 2:
Determination of the new concentration of the solution.
The new concentration of the solution can be obtained by using the dilution formula as shown below:
C1V1 = C2V2
3 x 185 = C2 x 750
Divide both side by 750
C2 = 3 x 185 / 750
C2 = 0.74M
Therefore, the new concentration of the solution is 0.74M
Ice floats after it crystallizes because ITS DENSITY IS LESS THAN THAT OF WATER.
When a quantity of water is cools down by reducing its temperature, the molecules of the water lose kinetic energy and slow down in their movement. As the water is cooling down, it is volume is expanding. When the temperature reaches zero degree Celsius, the water becomes ice. At this point, the ice can float on water because its density is less than that of water; this is as a result of the spaces that now exist in the ice structure.
Answer:
The number of molecules is 1.4140*10^24 molecules
Explanation:
To know the number of molecules, we need to determine how many moles of water we have, water has molar mass of 18.015g/mol
This means that one mole of water molecules has a mass of 18.015g.
42.3g * 1 mole H2O/18.015g
= 2.3480 moles H2O
We are using avogadros number to find the number of molecules of water
2.3480 H2O * 6.022*10^ 23moles/ 1mole of H2O
That's 2.3480 multiplied by 6.022*10^23 divided by 1 mole of H2O
Number of molecules = 1.4140 *10^24 molecules