Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
The best explanation would be A. The reason the balloon is inflated is because its filled with gas, and the gas particles collide with the interior of the balloon to give it its shape.
Answer:
(A) 4.616 * 10⁻⁶ M
(B) 0.576 mg CuSO₄·5H₂O
Explanation:
- The molar weight of CuSO₄·5H₂O is:
63.55 + 32 + 16*4 + 5*(2+16) = 249.55 g/mol
- The molarity of the first solution is:
(0.096 gCuSO₄·5H₂O ÷ 249.55 g/mol) / (0.5 L) = 3.847 * 10⁻⁴ M
The molarity of CuSO₄·5H₂O is the same as the molarity of just CuSO₄.
- Now we use the dilution factor in order to calculate the molarity in the second solution:
(A) 3.847 * 10⁻⁴ M * 6mL/500mL = 4.616 * 10⁻⁶ M
To answer (B), we can calculate the moles of CuSO₄·5H₂O contained in 500 mL of a solution with a concentration of 4.616 * 10⁻⁶ M:
- 4.616 * 10⁻⁶ M * 500 mL = 2.308 * 10⁻³ mmol CuSO₄·5H₂O
- 2.308 * 10⁻³ mmol CuSO₄·5H₂O * 249.55 mg/mmol = 0.576 mg CuSO₄·5H₂O
Answer:
The answers are as given in the attachment
Explanation:
The application of the de brogile equation was used and appropriate substitution were made as shown in the attachment