First, we need the no.of moles of O2 = mass/molar mass of O2
= 55 g / 32 g/mol
= 1.72 mol
from the balanced equation of the reaction:
2H2 (g) + O2(g) → 2H2O(g)
we can see that the molar ratio between O2: H2O = 1: 2
So we can get the no.of moles of H2O = 2 * moles of O2
= 2 * 1.72 mol
= 3.44 mol
So by substitution by this value in ideal gas formula:
PV = nRT
when P = 12.4 atm & n H2O = 3.44 mol & R= 0.0821 & T = 85 + 273=358K
12.4 atm *V = 3.44 * 0.0821 * 358 = 8.15 L
∴ V ≈ 8.2 L
The question requires us to draw the structural formula, provide the name and highlight any functional groups for the compound: diethyl ether.
The molecule diethyl ether can be represented as it follows, with two ethyl groups (-CH2CH3) bonded to a oxygen atom:
Note that the functional group ether (R-O-R) is present in the structre and highlighted in blue in the image. The official name of diethyl ether is ethoxyethane.
Answer:
protons and neutrons- second choice