A bond is non polar if it is between same atoms and polar if it is between different atoms.
Same atoms are like two dogs of same strength pulling a bone towards towards each other. But when it’s different atoms it’s like a big dog and small dog then the bone is more towards bigger dog. So it’s the same way in bonds.
Bonds are made up of electrons, when the more stronger pulling atom is present than other the electrons are more towards it and as a result we have polar bond. There is development of a kind of a negative pole and a positive pole.
The stronger atom has electrons towards itself so it has a little more negative charge while the other atom has positive charge. This makes bond polar.
So just look for bond between two different atoms, it would be polar.
Look at the pic below to see the answer.
Marked with green is bond between same atoms... one carbon and another carbon so it is not polar and test marked with blue are polar.
Well the answer should have been 10 but since the bonds at 3 and 8 are two of same type we count only one of them.
The answer is 8... well the answer should be 10 otherwise... discuss it with ur teacher
Answer:
Say sorry, and then send them a gift.
Explanation:
<u>Given:</u>
Mass of calcium nitrate (Ca(NO3)2) = 96.1 g
<u>To determine:</u>
Theoretical yield of calcium phosphate, Ca3(PO4)2
<u>Explanation:</u>
Balanced Chemical reaction-
3Ca(NO3)2 + 2Na3PO4 → 6NaNO3 + Ca3(PO4)2
Based on the reaction stoichiometry:
3 moles of Ca(NO3)2 produces 1 mole of Ca3(PO4)2
Now,
Given mass of Ca(NO3)2 = 96.1 g
Molar mass of Ca(NO3)2 = 164 g/mol
# moles of ca(NO3)2 = 96.1/164 = 0.5859 moles
Therefore, # moles of Ca3(PO4)2 produced = 0.0589 * 1/3 = 0.0196 moles
Molar mass of Ca3(PO4)2 = 310 g/mol
Mass of Ca3(PO4)2 produced = 0.0196 * 310 = 6.076 g
Ans: Theoretical yield of Ca3(PO4)2 = 6.08 g
Rubisco is an important enzyme that helps in making lifeless carbon of carbon dioxide into organic molecules. Rubisco takes carbon dioxide and attaches it to ribulose bisphosphate, a
short sugar chain with five carbon atoms that has rubp as its shortcut. Rubisco then clips the
lengthened chain into to polyglycerate pices, which are pretty flexible molecules and are also used in the feeding of the plant. Most of it is used in the photosynthesis pathway, but some of it is used to make sucrose
(table sugar) to feed the rest of the plant, or stored away in the form
of starch for later use. Hence, rubisco is crucial in the storing of the energy that is created from photosynthesis.