Answer:
A. Soaps react with ions in hard water to create a precipitate.
B. Soaps are both hydrophobic and hydrophilic.
D. Soaps should be weakly alkaline in solution.
Explanation:
A. Hard water contains <u>magnesium and calcium minerals</u> like calcium and magnesium carbonates, sulfates and bicarbonates. As soon as these minerals come in contact with soap their ions like Mg²⁺ & Ca²⁺ form precipitates.
B. Soap are both hydrophilic and hydrophobic. They reason why they exhibit both the properties is really important for their functionality. The hydrophobic part of soap makes interaction with oil/dust particles while the hydrophilic part makes interaction with water. When the cloth is rinsed the dirt/soap particles are removed from the dirty clothes thereby making them clean.
C. Soaps have alkaline pH i.e. more than 7 that is why they have bitter taste.
Answer:
ooh sorry, but will this help you now:
Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in sverdrup (sv), where 1 sv is equivalent to a volume flow rate of 1,000,000 m (35,000,000 cu ft) per second.
Surface currents, which make up only 8% of all water in the ocean, are generally restricted to the upper 4…
Explanation:
Hope this helps :)
Answer:
the correct answer to your question is 20
<u><em>Answer: Chemical reaction, a process in which one or more substances, the reactants, are converted to one or more different substances, the products.</em></u>
Explanation:
Answer: Thus the correct option is D. All of the above describe a mole
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to molecular mass in grams.
1 mole of every substance contains avogadro's number
of particles.
Mole is the S.I unit for measuring the amount of substance. It is often used to measure large number of particles.
Thus the correct option is D. All of the above describe a mole