X = -0.58377631 , 2.94771158
The ideal gas law is PV= nRT.
First you need to manipulate the equation to splice for volume,
Which will be V= nRT/P
Now you need to input the numbers for each variable. Make sure to remember what the value R equals and it’s units. R= 0.08206 L•atm/n•K
<span>We can solve this problem by assuming that the decay of
cyclopropane follows a 1st order rate of reaction. So that the
equation for decay follows the expression:</span>
A = Ao e^(- k t)
Where,
A = amount remaining at
time t = unknown (what to solve for) <span>
Ao = amount at time zero = 0.00560
M </span><span>
<span>k = rate constant
t = time = 1.50 hours or 5400 s </span></span>
The rate constant should
be given in the problem which I think you forgot to include. For the sake of
calculation, I will assume a rate constant which I found in other sources:
k = 5.29× 10^–4 s–1 (plug in the correct k value)
<span>Plugging in the values
in the 1st equation:</span>
A = 0.00560 M * e^(-5.29 × 10^–4 s–1 * 5400 s )
A = 3.218 <span>× 10^–4 M (simplify
as necessary)</span>