1. Meteorologist predict the weather by using tools. They use these tools to measure atmospheric conditions that occurred in the past and present, and they apply this information to create educated guesses about the future weather. The best we can do is observe past and present atmospheric patterns and data, and apply this information to what we think will happen in the future. Meteorologists use the scientific method on a daily – and even hourly – basis!
2. They use thermometers, barometers, sling psychrometers and rain gauges. They also use anemometers, hygrometers, weather maps, weather balloons and weather satellites.
Partial pressure of gas A is 1.31 atm and that of gas B is 0.44 atm.
The partial pressure of a gas in a mixture can be calculated as
Pi = Xi x P
Where Pi is the partial pressure; Xi is mole fraction and P is the total pressure of the mixture.
Therefore we have Pa = Xa x P and Pb = Xb x P
Let us find Xa and Xb
Χa = mol a/ total moles = 2.50/(2.50+0.85) = 2.50/3.35 = 0.746
Xb = mol b/total moles = 0.85/(2.50+0.85) = 0.85/3.35 = 0.254
Total pressure P is given as 1.75 atm
Pa = Xa x P = 0.746 x 1.75 = 1.31atm
Partial pressure of gas A is 1.31 atm
Pb = Xb x P = 0.254 x 1.75 = 0.44atm
Partial pressure of gas B is 0.44 atm.
Learn more about Partial pressure here:
brainly.com/question/15302032
#SPJ4
For example we are going to use this unbalanced chemical reaction:
H₂ + O₂ → H₂O.
First, calculate number of atoms (hydrogens and oxygens) on left and right. There is two oxygen and two hydrogen on left and two hydrogen and one oxygen on right.
You can not change molecular formula of compound, only you can put coefficient in fron of compound to balance reaction.
Put 2 in front water to balance oxygen (now you have two oxygens on left and right). But now you have four hydrogens on right, so you must put 2 in fron hydrogen on the left.
2H₂ + O₂ → 2H₂O.
1 mole of any gas under STP ----- 22.4 L
18.65 L*1 mol/22.4 L ≈ 0.8326 mol N2
Answer:
I belive it is either a element or co mpound Hope this helped :D :3
Explanation: