Answer:
those have symbols for their Latin or Greek name
Explanation:
hope it helps
Humphry Davy First discovered sodium
So let's convert this amount of mL to grams:

Then we need to convert to moles using the molar weight found on the periodic table for mercury (Hg):

Then we need to convert moles to atoms using Avogadro's number:
![\frac{6.022*10^{23}atoms}{1mole} *[8.135*10^{-2}mol]=4.90*10^{22}atoms](https://tex.z-dn.net/?f=%20%5Cfrac%7B6.022%2A10%5E%7B23%7Datoms%7D%7B1mole%7D%20%2A%5B8.135%2A10%5E%7B-2%7Dmol%5D%3D4.90%2A10%5E%7B22%7Datoms%20)
So now we know that in 1.2 mL of liquid mercury, there are
present.
Bronsted lowry bases
NO2- amd OH-
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.