1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
15

List all the planets in the solar system and their features

Physics
2 answers:
Andrei [34K]3 years ago
5 0

Answer:

The planets of the solar system are 8:

Mercury is the planet closest to the sun, and therefore the hottest planet in stable conditions. It has an average temperature of 160º C, but with nights of up to -170º C. It is a rocky planet, and it does not have satellites. Its period of rotation around the sun is 88 days.

Venus is also a rocky planet, but considerably larger than Mercury. It has an average temperature of 460º C, due to its enormous atmospheric pressure, thus surpassing Mercury, which is even closer to the sun. Its rotation period is 225 days, and it does not have satellites either.

The Earth, our planet, is the only one with ideal conditions for the development of life: it has a rotation of 365 days, an average temperature of 15ºC and water in sufficient abundance to allow the development of oxygen-producing vegetation.

Mars, the last rocky planet in the chain, has a rotation period of 687 days, an average temperature of -46º C and minimal amounts of water. It has 2 satellites.

Then we have the gaseous planets, which are Jupiter, Saturn, Uranus, and Neptune. These do not have a solid surface, but are composed of gases (and portions of ice due to the extremely high temperature they have, from -120ºC to -220ºC) and enormous amounts of satellites. These are the least fit for life, due to their temperature and lack of solidity.

lutik1710 [3]3 years ago
3 0

Answer:

Look below.

Explanation:

Mercury is the closest planet to the sun. It rotates slowly — about twice for every three orbits it completes. Slightly larger than Earth's moon, it is the smallest planet in the solar system. It has no moons, no rings, and an atmosphere so thin that scientists classify it as an exosphere.

The second planet from the sun, Venus is slightly smaller than Earth.The heat and pressure make the planet decidedly inhospitable to life.

Earth, the third planet from the sun and the largest terrestrial planet, is the only planet known to host living beings and the only one known to have liquid water on its surface. The atmosphere, made of mostly nitrogen, oxygen and carbon dioxide, is crucial to Earth's ability to support life.

Mars, the fourth planet from the sun.The red color of the surface comes from iron oxide or rust in the soil. The topography is characterized by large volcanoes and deep valleys, and Mars experiences frequent planet-wide wind storms. Some of the surface features of Mars, such as dry river beds, hint to the possibility that water previously existed on the planet and may still flow under the surface.

 Jupiter

Jupiter is the largest planet in our solar system

Jupiter's mass is 318 times greater than Earth's.  Jupiter’s magnetic field is 20,000 times stronger than Earth’s and it has the strongest radio emissions of any planet in the solar system. as of April 2011 has 63 known moons in orbit around it, the largest of which are Io, Europa, Ganymede and Calliso.

Saturn, the sixth planet from the sun, is also a gas giant, and it's most impressive feature as seen from afar is an extensive and complex ring system. The rings orbit the planet in a thin band about a mile thick. The radius of Saturn is about 9.5 times that of Earth, and instead of one paltry moon, it boasts 62. The interior of Saturn, like Jupiter, is made of mostly hydrogen and helium. Nearing the core, the intense pressure turns the gases into liquids and ultimately into a metallic form that conducts electricity.

While most planets spin on their axis with a slight tilt, the ice giant Uranus spins on an axis parallel to its orbit. With a diameter of 31,518 miles (50,723 kilometers), this cold planet is four times the size of Earth and is made of a large atmosphere of methane with a dense core of frozen methane. Uranus has a faint ring system and 27 moons in its orbit.

The blue planet Neptune is the farthest one from the sun and, like Uranus, is a very cold place.  one year on Neptune is 165 Earth years. The atmosphere is mostly methane, which gives the planet its blue color. The cold interior of the planet is mainly methane ice. Like all the outer planets, Neptune, like Uranus, has a diameter roughly four times that of Earth. Thirteen moons and a faint ring system orbit the planet.

Saturn

Saturn has 53 named satellites

Saturn has the lowest density of any planet in our solar system. It has a rocky core composed of liquid metallic hydrogen and elements consistent with the primordial solar nebula (gaseous cloud) that formed the solar system. Saturn’s most prominent feature is its rings, first observed by Galileo in 1610. The rings are composed of millions of small particles of rock and ice, each having its own independent orbit around the planet. Although the other gas planets also have rings, it is not yet known why Saturn’s are so prominent.

Uranus

Uranus is the only gas giant with its equator at a right angle to its orbit. It was also the first planet to be discovered through a telescope. It has 13 known rings that are dark and composed of dust and particles up to 10 meters in diameter. Uranus has 5 large moons as well as 10 smaller ones that were discovered by the Voyager 2 probe. The methane in Uranus’s upper atmosphere is what gives the planet its blue color.

Neptune

Neptune’s existence was the first to be predicted by mathematical calculations before the planet was actually seen. Neptune's mass is approximately 17 times greater than Earth’s. Its winds can reach up to 2,000 km per hour, the fastest in the solar system.

You might be interested in
Which of the fundamental forces explains the structure of atoms and molecules?
spayn [35]
The electromagnetic force<span> holds atoms and molecules together.
like a magnet's pull on steel.</span>
7 0
3 years ago
Read 2 more answers
A woman launches a boat from one shore of a straight river and wants to land at the point directly on the opposite shore. If the
I am Lyosha [343]

Answer:

If she stands on the North side of a river flowing to the East at 5 mph,

she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have

x^2 + 5^2 = 10^2 where x is her speed directly across the river

x = (75)^1/2 = 8.66 mph towards the South

sin theta = 5 / 10 = 1/2

She must angle the boat at 30 deg from straight South

4 0
2 years ago
A wall has a negative charge distribution producing a uniformhorizontal electric field. A small plastic ball of mass .01kg carry
Sauron [17]

Answer:

a)  E = -4 10² N / C , b) x = 0.093 m, c)     a = 10.31 m / s², θ=-71.9⁰

Explanation:

For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball

X axis

             F_{e} - T_{x} = m a

Axis y

            T_{y} - W = 0

Initially the system is in equilibrium, so zero acceleration

            Fe = T_{x}  

            T_{y} = W

Let us search with trigonometry the components of the tendency

            cos θ = T_{y} / T

            sin θ = T_{x}  / T

           T_{y} = cos θ

           T_{x}  = T sin θ

We replace

            q E = T sin θ

            mg = T cosθ

             

a) the electric force is

                F_{e} = q E

                E = F_{e} / q

                E = -0.032 / 80 10⁻⁶

                E = -4 10² N / C

b) the distance to this point can be found by dividing the two equations

                q E / mg = tan θ

                θ = tan⁻¹ qE / mg

Let's calculate

              θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)

              θ = tan⁻¹ 0.3265

               θ = 18 ⁰

               sin 18 = x/0.30

               x =0.30 sin 18

               x = 0.093 m

c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations

X axis

           F_{e} = m aₓ

            aₓ = q E / m

           aₓ = 80 10⁻⁶ 4 10² / 0.01

           aₓ = 3.2 m / s²

Axis y

           W = m a_{y}

           a_{y} = g

           a_{y} = 9.8 m/s²

The total acceleration is can be found using Pythagoras' theorem

             a = √ aₓ² + a_{y}²

             a = √ 3.2² + 9.8²

             a = 10.31 m / s²

The Angle meet him with trigonometry

               tan θ = a_{y} / aₓ

               θ = tan⁻¹ a_{y} / aₓ

               θ = tan⁻¹ (-9.8) / 3.2

               θ = -71.9⁰

Movement is two-dimensional type with acceleration in both axes

8 0
3 years ago
A block of mass m is pushed a horizontal distance D from position A to position B, along a horizontal plane with friction coeffi
Wewaii [24]

Answer:

The total work done by friction is -2 · μ · m · g · D

Explanation:

Hi there!

The work done by a force is calculated as follows:

W = F · d · cos θ

Where:

W = work.

F = force that does the work.

d = displacement.

θ = angle between the displacement and the force.

If the force is horizontal, as in this case, cos θ = 1

The friction force is calculated as follows:

Ffr = μ · m · g

Where:

μ = friction coefficient.

m = mass of the object.

g = acceleration due to gravity.

Then, in this case, the work done by friction when pushing the block from A to B will be:

W AB = -Ffr · D

W AB = - μ · m · g · D

Notice that the friction force is negative because it is opposite to the pushing force P.

When the block is pushed from B to A, the work done by friction will be:

W BA = Ffr · (-D)

W BA = -μ · m · g · D

Now, the displacement is negative and the friction force is positive (in the opposite direction to -P).

The total work done by friction will be:

W AB + W BA = - μ · m · g · D  - μ · m · g · D  = -2 μ · m · g · D

5 0
3 years ago
A single-slit diffraction pattern is formed by monochromatic electromagnetic radiation from a distant source passing through a s
tatiyna

Answer:

a. λ = 647.2 nm

b. I₀  9.36 x 10⁻⁵

Explanation:

Given:

β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m

a.

The wavelength of the radiation can be find using

β = 2 π / γ * sin θ

λ = [ 2π * γ * sin θ ] / β

λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad

λ = 647.14 x 10⁻⁹ m  ⇒  λ = 647.2 nm

b.

The intensity of the central maximum I₀

I = I₀ (4 / β² ) * sin ( β / 2)²

I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²

I = I₀  9.36 x 10⁻⁵

8 0
3 years ago
Other questions:
  • If a bike rider travels 4 km in an hour,what is his speed measured in miles per hour?
    9·2 answers
  • A 20.0 kg mass moving at a velocity of + 3.0 m/s is stopped by a constant force of 15.0 n. how many seconds must the force act o
    11·1 answer
  • If 125 j of heat energy is applied to a block of silver weighing 29.3 g, by how many degrees will the tem- perature of the silve
    5·1 answer
  • - True or false: A 100 kilogram moon rock has more inertia on Earth than it does on the Moon.
    12·1 answer
  • If a rigid body rotates about point O, the sum of the moments of the external forces acting on the body about point O equals whi
    11·1 answer
  • What is the difference between Mass and Weight? ​
    5·1 answer
  • Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel
    14·1 answer
  • 2. a) A student obtained ice at 0°C from a refrigerator and placed it in a beaker on a
    11·1 answer
  • A drag racing vehicle travels from zero to a hundred miles per hour and 5 seconds north what is acceleration
    10·1 answer
  • Does a five pound ball weigh more or less 40000 miles above sea level​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!