The radius of curvature of the proton's path while in the field is
×
.
b) Let R = radius curvature of protons path. Then,
relation b/w B, R, and v is: -


× 
Hence, the radius of curvature of the proton's path while in the field is
×
.
<h3>
What do you mean by Magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field. The magnetic field of a permanent magnet pulls on ferromagnetic substances like iron and attracts or repels other magnets. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilized in electromagnets, and electric fields that change in time produce magnetic fields that surround magnetized things.
To know more about Magnetic Field visit:
brainly.com/question/14848188
#SPJ4
Answer:
R (120) = 940Ω
Explanation:
The variation in resistance with temperature is linear in metals
ΔR (T) = R₀ α ΔT
where α is the coefficient of variation of resistance with temperature, in this case α = -0,0005 / ºC
let's calculate
ΔR = 1000 (-0,0005) (120-0)
ΔR = -60
Ω
ΔR = R (120) + R (0) = -60
R (120) = -60 + R (0)
R (120) = -60 + 1000
R (120) = 940Ω
Answer:
0.00970 s
Explanation:
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
Force due to magnetic field = qvB sin θ
q = charge on the particle = 5.4 μC
v = velocity of the charge
B = magnetic field strength = 2.7 T
θ = angle between the velocity of the charge and the magnetic field = 90°, sin 90° = 1
F = qvB
Centripetal force responsible for circular motion = mv²/r = mvw
where w = angular velocity.
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
mvw = qvB
mw = qB
w = (qB/m) = (5.4 × 10⁻⁶ × 2.7)/(4.5 × 10⁻⁸)
w = 3.24 × 10² rad/s
w = 324 rad/s
w = (angular displacement)/time
Time = (angular displacement)/w
Angular displacement = π rads (half of a circle; 2π/2)
Time = (π/324) = 0.00970 s
Hope this Helps!!!