Answer:
* far from one of the charges, the field of the other charge is small and can be neglected
* on the outside of the loads the fields are added territorially
* between the charges the two fields tend to vanish
Explanation:
The electric field around two objects with charge of the same sign, for simplicity suppose that the objects have positive point spherical charges,
E = k q / r2
bold letters indicate vectors, therefore the total electric field is
E_total = E1 + E2
the module of this field is
E_total = E1- E2
therefore we can outline this field
* far from one of the charges, the field of the other charge is small and can be neglected
* on the outside of the loads the fields are added territorially
* between the charges the two fields tend to vanish
An outline of these shows in Attachment A
The equipotential surfaces are defined as being perpendicular to the electric field lines since the electric field and the power difference are related
E = 
We can schematize some characteristics of these surfaces
* very close to each load are spherical surfaces
* very far from the load is an elliptical surface, which envelops the loads
* between them there is a point of zero potential point C
See attached part B