The partial pressure of hydrogen is 0.31 atm
calculation
find the number of hydrogen moles the container, that is
25/100 x 6.4 =1.6 moles of hydrogen
find the partial pressure for hydrogen in 1.6 moles
that is 6.4 moles= 1.24 atm
1.6 moles= ?
by cross multiplication
1.6moles x1.24 atm/ 6.4 moles= 0.31 atm
Given what we know, we can confirm that as with any experiment, the control variable will be the one that through each trial of the experiment, no matter how many times it is performed, stays constant.
<h3>What is a controlled variable?</h3>
- A variable that remains constant through an experiment.
- They are used to compare results to the normal condition.
- They are also used to isolate the changes to one factor at a time and thus know its exact effects on the outcome.
- This increases the accuracy of the data and the subsequent conclusion.
Therefore, we can confirm that if a variable stays constant through each phase and trial of an experiment, it is considered to be a controlled variable and is useful in order to increase the accuracy of the conclusion.
To learn more about control variables visit:
brainly.com/question/17555102?referrer=searchResults
Protons, it was once organized by atomic mass but organizing by protons turned out to be better
Answer:
Nitrifying Bacteria are a group of aerobic bacteria important in the nitrogen cycle as converters of soil ammonia to nitrates, compounds usable by plants. An example is nitrosomonas or nitrobacter and species in that family.
The schematic diagram is attached below, which summarises the oxidation of ammonia or free nitrogen in the soil to nitrates for the cowpea plant's utilisation.
Molecular Motion<span> is the speed at which molecules or atoms move dependent on temperature and state of matter.
Explanation:
</span>All molecules are<span> in constant motion. Molecules of a liquid have </span>a lot of<span> freedom of movement than those </span>in an exceedingly<span> solid. Molecules </span>in an exceedingly<span> gas have </span>the best<span> degree of motion.</span>
<span>
Heat, temperature </span>and also the<span> motion of molecules </span>area unit<span> all </span>connected<span>. Temperature </span>could be a life<span> of </span>the common K.E.<span> of the molecules </span>in an exceedingly<span> material. Heat </span>is that the<span> energy transferred between materials that have </span>completely different temperatures<span>. Increasing the temperature </span>will increase<span> the </span>travel<span> motion of molecules Energy </span>is expounded<span> to temperature by the relationship.</span>