Molar mass is the mass of 1 mol of substance.
Molar masses of compounds can be calculated by the sum of the products of molar masses of individual atoms by number of corresponding individual atoms.
Compound formula is C₉H₈O₄
the molar masses of the atoms making up the compound
C - 12 g/mol x 9 C = 108
H - 1 g/mol x 8 H = 8
O - 16 g/mol x 4 O = 64
therefore molar mass of aspirin = 108 + 8 + 64 = 180 g/mol
answer is 3.180
Answer:
Option C :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
Explanation:
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
Tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
For Example
C₂H₆O₂ Consist of Carbon (C), Hydrogen (H), and Oxygen (O)
Now
Look at the ratio of these three atoms in the compound
C : H : O
2 : 6 : 2
Divide the ratio by two to get simplest ratio
C : H : O
2/2 : 6/2 : 2/2
1 : 3 : 1
So for the empirical formula the simplest ratio of carbon to hydrogen to oxygen is 1:3:1
So the empirical formula will be
Empirical formula of C₂H₆O₂ = CH₃O
So, Option C is correct :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
Unequal heating of the atmosphere
Answer: The concentrations of A , B , and C at equilibrium are 0.1583 M, 0.2583 M, and 0.1417 M.
Explanation:
The reaction equation is as follows.

Initial : 0.3 0.4 0
Change: -x -x x
Equilbm: (0.3 - x) (0.4 - x) x
We know that, relation between standard free energy and equilibrium constant is as follows.

Putting the given values into the above formula as follows.


x = 0.1417
Hence, at equilibrium
= 0.1583 M
= 0.2583 M
Helloooooooooooooooooooooo