The answer is
<span>
only carboxyl groups (=C=OO-</span>
Moles pf mgcl2= 2,11/M mgcl2=2,11/95= 0,0222
Molarity=0,0222/1,5=0,0148 M.
I hope this is correct.
Ok, after doing an immense amount of research I came up with the most logical answer.
A. Is indicated by a negative enthrall sign.
Reasoning: an endothermic reaction is ice melting and the energy being more than its surroundings. Not specified to ice but as an example, ice is endothermic. That puts d and b out of the running leaving you left with a and c.
When I searched up enthalpy, it said “When a substance changes at constant pressure, enthalpy tells how much heat and work was added or removed from the substance.” Which is similar to c, right? Yeah, meaning both a and c are similar in that aspect.
The reason I decided to go with a is because heat is NOT released into the surrounding, exothermic reactions release energy and heat into the surrounding.
2 Li(s) +Cl₂→ 2 Li⁺ (aq) + 2Cl⁻ (aq)
The cell potential of the reaction above is +4.40V
<em><u>calculation</u></em>
Cell potential =∈° red - ∈° oxidation
in reaction above Li is oxidized from oxidation state 0 to +1 therefore the∈° oxid = -3.04
Cl is reduce from oxidation state 0 to -1 therefore the ∈°red = +1.36 V
cell potential is therefore = +1.36 v -- 3.04 = + 4.40 V
Answer:
1s2 2s2 2p6 3s2 3p6 4s2 3d5
Explanation:
According to the Aufbau principle, electrons are filled in orbitals in order of increasing energy. The energy of orbitals in the electronic configuration of manganese increases from left to right, hence 3d orbital is much greater in energy than a 3p orbital.
The arrangement of orbitals in order of increasing energy is shown in the answer above.