Thermoplastic and thermosetting
thermoplastic:- they are easily molded and extruded into films, fibres and packaging.For eg. PVC
thermosetting:-they are hard and durable and can be used for aircraft parts,tires and auto parts .For eg. phenolic resins.
<em><u>HOPE</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>HELPS</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em><em><u>✌️</u></em>
Answer:
For many solids dissolved in liquid water, the solubility increases with temperature. The increase in kinetic energy that comes with higher temperatures allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions.
Explanation:
<span><em><u>Climatology </u>is a <u>subspecialty </u>of a </em><u><em>Climate</em></u><em> and for how the <u>climate</u> changes. This is averaged out from over a set of a period of time.
<u>I hope this helps! ;D</u></em></span>
Answer:
An alloy is a mixture of chemical elements, which form an impure substance that retains the characteristics of a metal.
Explanation:
Have a nice day. Auf Wiedersehen.
The melting point of potassium = 
Melting point of titanium = 
Titanium has a stronger metallic bonding compared to potassium. Titanium being a transition metal has greater number of valence electrons (4 valence electrons) contributing to the valence electron sea compared to potassium which has only one valence electron. The atomic size of Titanium much lower than that of potassium, so the bonding between Titanium atoms is stronger than that of potassium. Hence, the melting point of Titanium is much higher than that of potassium.