1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
3 years ago
13

Dose mitochondria make necessary chemicals for the cell

Chemistry
1 answer:
Bezzdna [24]3 years ago
5 0
Yes mitochondria does make necrssary chemicals for the cell therefore the answer to your question is yes
You might be interested in
An earthquake’s magnitude is a measure of the
marissa [1.9K]
An earthquake's magnitude is a measure of how much energy an earthquake releases. Typically, the richter scale is used.
8 0
3 years ago
Read 2 more answers
HELP ME RIGHT NOW
Fed [463]
The answer is B. neutrons have no charge

4 0
3 years ago
Read 2 more answers
Ethane is an alkane having two carbon atoms bound to hydrogen atoms. Recall what you have learned about the tetravalent nature o
svlad2 [7]
The molecule for ethane is C2H6. or CH3-CH3. 

Carbon LOVES hydrogen. If possible, Carbon would have four bonds attach to hydrogens. IN this molecule, one of the bond is used to attach a carbon to another carbon, so instead of 4 hydrogens, each carbon would have 3 hydrogens..
3 0
3 years ago
Answer these please ASAP need help no idea how to do these
STALIN [3.7K]

Answer:

Explanation:

Cu:

Number of moles = Mass / molar masa

2 mol = mass / 64 g/mol

Mass = 128 g

Mg:

Number of moles = Mass / molar masa

0.5 mol = mass / 24 g/mol

Mass =  g

Cl₂:

Number of moles = Mass / molar masa

Number of moles  = 35.5 g / 24 g/mol

Number of moles = 852 mol

H₂:

Number of moles = Mass / molar mass

8 mol  = Mass / 2 g/mol

Mass =  16 g

P₄:

Number of moles = Mass / molar masa

2 mol  =  mass / 124 g/mol

Mass = 248 g

O₃:

Number of moles = Mass / molar masa

Number of moles  = 1.6 g /48  g/mol

Number of moles = 0.033 mol

H₂O

Number of moles = Mass / molar masa

Number of moles  = 54 g / 18 g/mol

Number of moles = 3 mol

CO₂

Number of moles = Mass / molar masa

2 mol  =  mass / 124 g/mol

Mass = 248 g

NH₃

Number of moles = Mass / molar masa

Number of moles  = 8.5 g / 17 g/mol

Number of moles = 0.5 mol

CaCO₃

Number of moles = Mass / molar masa

Number of moles  = 100 g / 100 g/mol

Number of moles = 1 mol

a)

Given data:

Mass of iron(III)oxide needed = ?

Mass of iron produced = 100 g

Solution:

Chemical equation:

F₂O₃ + 3CO    →    2Fe  + 3CO₂

Number of moles of iron:

Number of moles = mass/ molar mass

Number of moles = 100 g/ 56 g/mol

Number of moles = 1.78 mol

Now we compare the moles of iron with iron oxide.

                        Fe          :           F₂O₃                

                           2          :             1

                          1.78       :        1/2×1.78 = 0.89 mol

Mass of  F₂O₃:

Mass = number of moles × molar mass

Mass = 0.89 mol × 159.69 g/mol

Mass = 142.124 g

100 g of iron is 1.78 moles of Fe, so 0.89 moles of F₂O₃ are needed, or 142.124 g of iron(III) oxide.

b)

Given data:

Number of moles of Al = 0.05 mol

Mass of iodine = 26 g

Limiting reactant = ?

Solution:

Chemical equation:

2Al + 3I₂   →  2AlI₃

Number of moles of iodine = 26 g/ 254 g/mol

Number of moles of iodine = 0.1 mol

Now we will compare the moles of Al and I₂ with AlI₃.

                          Al            :         AlI₃    

                          2             :           2

                         0.05         :        0.05

                           I₂            :         AlI₃

                           3            :          2

                         0.1           :           2/3×0.1 = 0.067

Number of moles of AlI₃ produced by Al are less so it will limiting reactant.

Mass of AlI₃:                            

Mass = number of moles × molar mass

Mass = 0.05 mol × 408 g/mol

Mass = 20.4 g

26 g of iodine is 0.1 moles. From the equation, this will react with 2 moles of Al. So the limiting reactant is Al.

c)

Given data:

Mass of lead = 6.21 g

Mass of lead oxide = 6.85 g

Equation of reaction = ?

Solution:

Chemical equation:

2Pb + O₂   → 2PbO

Number of moles of lead = mass / molar mass

Number of moles = 6.21 g/ 207 g/mol

Number of moles = 0.03 mol

Number of moles of lead oxide = mass / molar mass

Number of moles = 6.85 g/ 223 g/mol

Number of moles = 0.031 mol

Now we will compare the moles of oxygen with lead and lead oxide.

               Pb         :        O₂

                2          :         1

               0.03     :      1/2×0.03 = 0.015 mol

Mass of oxygen:

Mass = number of moles × molar mass

Mass = 0.015 mol × 32 g/mol

Mass =  0.48 g

The mass of oxygen that took part in equation was 0.48 g. which is 0.015 moles of oxygen. The number of moles of Pb in 6.21 g of lead is 0.03 moles. So the balance equation is

2Pb + O₂   → 2PbO

   

6 0
3 years ago
Part B Change the distance of the electron from the center position as it moves up and down. What relationship do you notice bet
Mrrafil [7]

Answer:

The movement of the electron changes the amplitude of the wave. The farther the electron moves from the center position, the greater the amplitude.

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • A rectangular field measures 6.0 m by 8.0 m. What is the area of the field in square centimeters (cm2)? Use the formula: Area =
    13·2 answers
  • What is sugar syrup candy
    7·2 answers
  • What is the melting point of a solution in which 3.5 grams of sodium chloride is added to 230 mL of water?
    11·2 answers
  • Balancing Redox Reactions<br> VO2++MnO4 V(OH)4++Mn2+(acidic)
    5·1 answer
  • Which statement about oxidation and reduction in a voltaic cell is true? Both oxidation and reduction occur at the anode.
    8·1 answer
  • When a glucose molecule loses a hydrogen atom as the result of an oxidation-reduction reaction in glycolysis, the glucose is?
    5·1 answer
  • The density of aluminum is 2.7 g/cm3. A metal sample has a mass of 52.0 grams and a volume of 17.1 cubic centimeters. Could the
    10·1 answer
  • The combustion reaction for methane is shown below:
    5·1 answer
  • The tabulated data show the rate constant of a reaction measured at several different temperatures. Use an Arrhenius plot to det
    10·1 answer
  • Pls help fast!!! Test due soon!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!