Hi There!!!!!!
Which of the following is not the same as 2.97 milligrams?A)0.297 cg
B)0.00297 g
C) 0.0000297 KG
Answer:0.00297 g
Ph = A
Acid = C
Base = D
Litmus paper = B
Term = ?
Answer:
b. The splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.
Explanation:
The spectrochemical series is an arrangement of ligands in increasing order of their magnitude of crystal field splitting.
Ligands that occurs towards the right in the series are called strong field ligands and they tend to cause a greater magnitude of crystal field splitting. Ligands that occur towards the left hand side in the series are called weak field ligands and they tend to cause a lesser magnitude of crystal field splitting.
Since Cl^- is a weak field ligand, it causes a lesser magnitude of d orbital splitting compared to ethylenediammine (en) which causes a greater magnitude of d orbital splitting.
Hence; the splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.
Answer:
Percent yield is 25%
Explanation:
Information given is
Actual yield is 25 g
But the yield should be 100 g
The percent yield is defined as the ratio of the actual yield and the predicted yield it means that out of the predicted yield what percentage of the actual yield is obtained
∴ Percent yield = (Actual yield ÷ Predicted yield) × 100
In case of the given problem the percent yield will be
(25÷100) × 100 = 25%
∴ Percent yield = 25%
Answer:
Electrons are in "orbitals", regions of space where there is high probability of being found.
Explanation:
The Wave mechanical model of the atom does not restrict the electrons to certain energy levels only as in the Bohr's model, instead it describes a region around the nucleus called an orbital, where there is a high probability of finding an electron with a certain amount of energy.
Each energy level is composed of one or more orbitals and the distribution of electrons around the nucleus is determined by the number and kind of energy levels that are occupied.