Answer:
4380 mmHg
Explanation:
Boyle's Law can be used to explain the relationship between pressure and volume of an ideal gas. The pressure is inversely related to volume, so if volume decrease the pressure will increase. It can be expressed in the equation as:
P1V1=P2V2
In this question, the first condition is 2L volume and 876 mmHg pressure. Then the system changed into the second condition where the volume is 400ml and the pressure is unknown. The pressure will be:
P1V1= P2V2
876 mmHg * 2L = P2 * 400ml /(1000ml/L)
P2= 876 mmHg * 2L / 0.4L
P2= 4380 mmHg
A compound is a substance that consists of 2 or more elements chemically combined in a fixed proportion.
Compounds can be broken down ijt0 simple substances by chemical means but, elements cannot.
The formula that correctly represents the product of an addition reaction between ethene and chlorine is C2H4Cl2
Addition reaction occurs when an atom is added to a compound that has a double bond or triple bond (unsaturated hydrocarbons). Unsaturated compounds are associated with addition reactions. For example Ethene is an example of unsaturated hydrocarbon; when reacted with chlorine gas , chlorine atoms are added to each carbon atoms.
Answer:
a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe
b. Glu-Ala-Phe + Gly-Ala-Tyr
Explanation:
In this case, we have to remember which peptidic bonds can break each protease:
-) <u>Trypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.
-) <u>Chymotrypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.
With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the <u>"Lis"</u> and <u>"Arg"</u> (See figure 1).
In "peptide b", the peptidic bond that would be broken is the one in the <u>"Phe"</u> (See figure 2). The second amino acid that can be broken is <u>tyrosine</u>, but this amino acid is placed in the <u>C terminal spot</u>, therefore will not be involved in the <u>hydrolysis</u>.
Answer:
volume of 
Explanation:
Firstly balance the given chemical equation,

From the given balance equation it is clearly that,
2 mole of Li gives 1 mole of H2 gas
⇔
⇔
⇔
hence
3 mole of Li will give 1.5 mole H2 gas
therefore volume of gas produced from 3 mole Li at 
volume of H2=33.6 litre