Explanation:
For what I can see, is missing the concentration of [Ag+] in the half-cell. To calculate it:
Niquel half-cell
Oxidation reaction: 
![E=E^0 - \frac{R*T}{n*F}*ln(1/[Ni^{2+}])](https://tex.z-dn.net/?f=E%3DE%5E0%20-%20%5Cfrac%7BR%2AT%7D%7Bn%2AF%7D%2Aln%281%2F%5BNi%5E%7B2%2B%7D%5D%29)
Assuming T=298 K / R=8.314 J/mol K / F=96500 C


Silver half-cell
Reduction reaction: 
![E=E^0 - \frac{R*T}{n*F}*ln(1/[Ag+])](https://tex.z-dn.net/?f=E%3DE%5E0%20-%20%5Cfrac%7BR%2AT%7D%7Bn%2AF%7D%2Aln%281%2F%5BAg%2B%5D%29)


Assuming T=298 K / R=8.314 J/mol K / F=96500 C
![0.835V=0.8V - \frac{8.314*298}{1*96500}*ln(1/[Ag+])](https://tex.z-dn.net/?f=0.835V%3D0.8V%20-%20%5Cfrac%7B8.314%2A298%7D%7B1%2A96500%7D%2Aln%281%2F%5BAg%2B%5D%29)
![[Ag+]=0.26 M](https://tex.z-dn.net/?f=%5BAg%2B%5D%3D0.26%20M)
Answer:
1. 3CaCrO4
2. 6
3. 3
Explanation:
1. Reactans on left side, products on right side
2. 3 x 2
3. 3
The NMR spectroscopy will be used for distinguishing a sample of 1,2-dichloropropane from 1,2-dibromopropane.
A spectroscopic method for observing the local magnetic fields surrounding atomic nuclei seems to be nuclear magnetic resonance spectroscopy, also referred to as magnetic resonance spectroscopy as well as NMR spectroscopy.
The identification and study of organic molecules benefit greatly from nuclear magnetic resonance (NMR) spectroscopy. This type of spectroscopy has a straightforward underlying theory. Numerous atom types' nuclei behave like small magnets and frequently align themselves in magnetic fields.
Therefore, the NMR spectroscopy will be used for distinguishing a sample of 1,2-dichloropropane from 1,2-dibromopropane.
To know more about spectroscopy
brainly.com/question/5402430
#SPJ4
That’s the correct answer I believe ^
The answer is (2) 1.0 dm3. In a balanced equation, the ratio of the mole number of the compounds is equal to the coefficients. And the ratio of volume of gas is equal to the mole number under same condition. So the answer is 1.0 mol.