I believe it is -1.11 m/s^2. I will let you know if its correct
<span>(20 cm)/(5 sec) = (0.20 meters)/(5 seconds)
</span>
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>
Answer:
Explanation:
Refractive Index: It is a measure to find how fast the light travels through a medium. It is ration of the speed of light in vacuum to speed of light in the medium. Speed of light is not constant and varies depending on the density of the medium.
In vacuum the speed of light is 300000 km/s and is denoted by c. When the light beam enters any medium the speed will decrease. Here it is given that the speed in plastic is v. Thus the refractive index(n) is given as:
It is a dimensionless no.
Explanation:
(a) For an isothermal process, work done is represented as follows.
W =
Putting the given values into the above formula as follows.
W =
=
=
=
= 29596.78 J
or, = 29.596 kJ (as 1 kJ = 1000 J)
Therefore, the required work is 29.596 kJ.
(b) For an adiabatic process, work done is as follows.
W =
=
=
= 49.41 kJ
Therefore, work required to produce the same compression in an adiabatic process is 49.41 kJ.
(c) We know that for an isothermal process,
or,
=
= 11 atm
Hence, the required pressure is 11 atm.
(d) For adiabatic process,
or,
=
= 28.7 atm
Therefore, required pressure is 28.7 atm.