Mechanical Waves require a medium to travel through in order to transport their energy from one location to another.
Hoped this helped!
Answer:
a) velocity v = 322.5m/s
b) time t = 19.27s
Explanation:
Note that;
ads = vdv
where
a is acceleration
s is distance
v is velocity
Given;
a = 6 + 0.02s
so,

Remember that
![v = \frac{ds}{dt} \\\frac{ds}{v} = dt\\\int\limits^s_0 {\frac{ds}{\sqrt{12s+0.02s^{2} } } } \, ds = \int\limits^t_0 {} \, dt \\t= (5\sqrt{2} ) ln \frac{| [s + 300 + \sqrt{(s^{2} + 600s)} ] |}{300} .......2](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bds%7D%7Bdt%7D%20%5C%5C%5Cfrac%7Bds%7D%7Bv%7D%20%3D%20dt%5C%5C%5Cint%5Climits%5Es_0%20%7B%5Cfrac%7Bds%7D%7B%5Csqrt%7B12s%2B0.02s%5E%7B2%7D%20%7D%20%7D%20%7D%20%5C%2C%20ds%20%3D%20%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt%20%5C%5Ct%3D%20%20%285%5Csqrt%7B2%7D%20%29%20ln%20%20%5Cfrac%7B%7C%20%5Bs%20%2B%20300%20%2B%20%5Csqrt%7B%28s%5E%7B2%7D%20%20%2B%20600s%29%7D%20%5D%20%7C%7D%7B300%7D%20.......2)
substituting s = 2km =2000m, into equation 1
v = 322.5m/s
substituting s = 2000m into equation 2
t = 19.27s
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.
Direct current (DC) is the flow of electric charge in only one direction. It is the steady state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating current (AC) is the flow of electric charge that periodically reverses direction.
<h2>
<em>#</em><em>L</em><em>E</em><em>T</em><em>S</em><em> </em><em>STUDY</em></h2>