To determine the object which could give the greatest impact we will apply the concept of momentum. The object that has the highest momentum will be the object that will impact the strongest. Our values are
Mass of Object A

Velocity of object A

Mass of object B

Velocity of object B

The general formula for momentum is the product between mass and velocity, then

For each object we have then,


Since the momentum of object A is greater than that of object B, then object A will make you feel force upon impact.
It would not. Imagine four forces equal in magnitude but opposite in direction (e.g. north, east, south, and west). If these forces were to double in magnitude they would still have the same magnitude, meaning the net force is still equal to zero.
Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally


Answer : The average speed of the sprinter is, 34.95 Km/hr
Solution :
Average velocity : It is defined as the distance traveled by the time taken.
Formula used for average velocity :

where,
= average velocity
d = distance traveled = 200 m
t = time taken = 20.6 s
Now put all the given values in the above formula, we get the average velocity of the sprinter.

conversion :
(1 Km = 1000m)
(1 hr = 3600 s)
Therefore, the average speed of the sprinter is, 34.95 Km/hr
Answer:
Thermal Conductivity Easily Transmits Heat Among Fine Ceramics