Answer:
1. the one with the raito
2. the one that stubbed their toe
Explanation:
Answer:
q = 8.57 10⁻⁵ mC
Explanation:
For this exercise let's use Newton's second law
F = ma
where force is magnetic force
F = q v x B
the bold are vectors, if we write the module of this expression we have
F = qv B sin θ
as the particle moves perpendicular to the field, the angle is θ= 90º
F = q vB
the acceleration of the particle is centripetal
a = v² / r
we substitute
qvB = m v² / r
qBr = m v
q =
The exercise indicates the time it takes in the route that is carried out with constant speed, therefore we can use
v = d / t
the distance is ¼ of the circle,
d =
d =
we substitute
v =
r =
let's calculate
r =
2 2.2 10-3 88 /πpi
r = 123.25 m
let's substitute the values
q =
7.2 10-8 88 / 0.6 123.25
q = 8.57 10⁻⁸ C
Let's reduce to mC
q = 8.57 10⁻⁸ C (10³ mC / 1C)
q = 8.57 10⁻⁵ mC
Answer:
The speed of the wave with a frequency 100 mhz will be 
Explanation:
We have given that frequency of light is 100 mhz
We have to find the speed of light in vaccuum
We know that all electromagnetic waves travels in vaccum wth the same speed as the speed of light
And we know that speed of light is equal to 
So the speed of the wave with a frequency 100 mhz will be 